Previous Page 2

Displaying 21 – 27 of 27

Showing per page

Dynamics of a Lotka-Volterra map

Francisco Balibrea, Juan Luis García Guirao, Marek Lampart, Jaume Llibre (2006)

Fundamenta Mathematicae

Given the plane triangle with vertices (0,0), (0,4) and (4,0) and the transformation F: (x,y) ↦ (x(4-x-y),xy) introduced by A. N. Sharkovskiĭ, we prove the existence of the following objects: a unique invariant curve of spiral type, a periodic trajectory of period 4 (given explicitly) and a periodic trajectory of period 5 (described approximately). Also, we give a decomposition of the triangle which helps to understand the global dynamics of this discrete system which is linked with the behavior...

Dynamics of circle maps with flat spots

Jacek Graczyk (2010)

Fundamenta Mathematicae

We study a certain class of weakly order preserving, non-invertible circle maps with irrational rotation numbers and exactly one flat interval. For this class of circle maps we explain the geometric and dynamic structure of orbits. In particular, we formulate the so called upper and lower scaling rules which show an asymmetric and double exponential decay of geometry.

Dynamics of quadratic polynomials : complex bounds for real maps

Mikhail Lyubich, Michael Yampolsky (1997)

Annales de l'institut Fourier

We prove complex bounds for infinitely renormalizable real quadratic maps with essentially bounded combinatorics. This is the last missing ingredient in the problem of complex bounds for all infinitely renormalizable real quadratics. One of the corollaries is that the Julia set of any real quadratic map z z 2 + c , c [ - 2 , 1 / 4 ] , is locally connected.

Dynamics on Hubbard trees

Lluís Alsedà, Núria Fagella (2000)

Fundamenta Mathematicae

It is well known that the Hubbard tree of a postcritically finite complex polynomial contains all the combinatorial information on the polynomial. In fact, an abstract Hubbard tree as defined in [23] uniquely determines the polynomial up to affine conjugation. In this paper we give necessary and sufficient conditions enabling one to deduce directly from the restriction of a quadratic Misiurewicz polynomial to its Hubbard tree whether the polynomial is renormalizable, and in this case, of which type....

Dynamique des échanges d’intervalles des groupes de Higman-Thompson V r , m

Hadda Hmili, Isabelle Liousse (2014)

Annales de l’institut Fourier

Dans cet article, nous étudions la dynamique des échanges d’intervalles affines dont les pentes sont des puissances d’un même entier m et dont les coupures et leurs images sont des rationnels. Nous montrons qu’une telle application a une dynamique très simple  : toutes ses orbites sont propres et elle possède au moins une orbite périodique ou un cycle périodique. Comme corollaire de ce résultat, nous montrons que les éléments de distortion dans les groupes de Higman-Thompson V r , m sont ceux d’ordre...

Currently displaying 21 – 27 of 27

Previous Page 2