Non-accessible critical points of certain rational functions with Cremer points.
We show that for entire maps of the form z ↦ λexp(z) such that the orbit of zero is bounded and Lebesgue almost every point is transitive, no absolutely continuous invariant probability measure can exist. This answers a long-standing open problem.
We consider the family of transcendental entire maps given by where a is a complex parameter. Every map has a superattracting fixed point at z = -a and an asymptotic value at z = 0. For a > 1 the Julia set of is known to be homeomorphic to the Sierpiński universal curve, thus containing embedded copies of any one-dimensional plane continuum. In this paper we study subcontinua of the Julia set that can be defined in a combinatorial manner. In particular, we show the existence of non-landing...
We consider a transcendental meromorphic function f belonging to the class ℬ (with bounded set of singular values). We show that if the Julia set J(f) is the whole complex plane ℂ, and the closure of the postcritical set P(f) is contained in B(0,R) ∪ {∞} and is disjoint from the set Crit(f) of critical points, then every compact and forward invariant set is hyperbolic, provided that it is disjoint from Crit(f). It is further shown, under general additional hypotheses, that f admits no measurable...
We establish a Poincaré-Dulac theorem for sequences of holomorphic contractions whose differentials split regularly. The resonant relations determining the normal forms hold on the moduli of the exponential rates of contraction. Our results are actually stated in the framework of bundle maps.Such sequences of holomorphic contractions appear naturally as iterated inverse branches of endomorphisms of . In this context, our normalization result allows to estimate precisely the distortions of ellipsoids...