Page 1

Displaying 1 – 5 of 5

Showing per page

Déformation J-équivalente de polynômes géometriquement finis

Peter Haïssinsky (2000)

Fundamenta Mathematicae

Any geometrically finite polynomial f of degree d ≥ 2 with connected Julia set is accessible by structurally stable sub-hyperbolic polynomials of the same degree. Moreover, they are topologically conjugate to f on their Julia sets.

Differential and integral calculus for a Schauder basis on a fractal set (I) (Schauder basis 80 years after)

Julian Ławrynowicz, Tatsuro Ogata, Osamu Suzuki (2009)

Banach Center Publications

In this paper we introduce a concept of Schauder basis on a self-similar fractal set and develop differential and integral calculus for them. We give the following results: (1) We introduce a Schauder/Haar basis on a self-similar fractal set (Theorems I and I'). (2) We obtain a wavelet expansion for the L²-space with respect to the Hausdorff measure on a self-similar fractal set (Theorems II and II'). (3) We introduce a product structure and derivation on a self-similar fractal set (Theorem III)....

Diffusion to infinity for periodic orbits in meromorphic dynamics

Janina Kotus, Grzegorz Świątek (2002)

Fundamenta Mathematicae

A small perturbation of a rational function causes only a small perturbation of its periodic orbits. We show that the situation is different for transcendental maps. Namely, orbits may escape to infinity under small perturbations of parameters. We show examples where this "diffusion to infinity" occurs and prove certain conditions under which it does not.

Dynamic classification of escape time Sierpiński curve Julia sets

Robert L. Devaney, Kevin M. Pilgrim (2009)

Fundamenta Mathematicae

For n ≥ 2, the family of rational maps F λ ( z ) = z + λ / z contains a countably infinite set of parameter values for which all critical orbits eventually land after some number κ of iterations on the point at infinity. The Julia sets of such maps are Sierpiński curves if κ ≥ 3. We show that two such maps are topologically conjugate on their Julia sets if and only if they are Möbius or anti-Möbius conjugate, and we give a precise count of the number of topological conjugacy classes as a function of n and κ.

Dynamics of symmetric holomorphic maps on projective spaces.

Kohei Ueno (2007)

Publicacions Matemàtiques

We consider complex dynamics of a critically finite holomorphic map from Pk to Pk, which has symmetries associated with the symmetric group Sk+2 acting on Pk, for each k ≥1. The Fatou set of each map of this family consists of attractive basins of superattracting points. Each map of this family satisfies Axiom A.

Currently displaying 1 – 5 of 5

Page 1