Page 1

Displaying 1 – 2 of 2

Showing per page

Shadow trees of Mandelbrot sets

Virpi Kauko (2003)

Fundamenta Mathematicae

The topology and combinatorial structure of the Mandelbrot set d (of degree d ≥ 2) can be studied using symbolic dynamics. Each parameter is mapped to a kneading sequence, or equivalently, an internal address; but not every such sequence is realized by a parameter in d . Thus the abstract Mandelbrot set is a subspace of a larger, partially ordered symbol space, Λ d . In this paper we find an algorithm to construct “visible trees” from symbolic sequences which works whether or not the sequence is realized....

Strong bifurcation loci of full Hausdorff dimension

Thomas Gauthier (2012)

Annales scientifiques de l'École Normale Supérieure

In the moduli space d of degree  d rational maps, the bifurcation locus is the support of a closed ( 1 , 1 ) positive current T bif which is called the bifurcation current. This current gives rise to a measure μ bif : = ( T bif ) 2 d - 2 whose support is the seat of strong bifurcations. Our main result says that supp ( μ bif ) has maximal Hausdorff dimension 2 ( 2 d - 2 ) . As a consequence, the set of degree  d rational maps having ( 2 d - 2 ) distinct neutral cycles is dense in a set of full Hausdorff dimension.

Currently displaying 1 – 2 of 2

Page 1