Techniques complexes d'étude d'E.D.O.
We prove that the algebraic multiplicity of a holomorphic vector field at an isolated singularity is invariant by equivalences.
We confirm a conjecture of Bernstein–Lunts which predicts that the characteristic variety of a generic polynomial vector field has no homogeneous involutive subvarieties besides the zero section and subvarieties of fibers over singular points.
Let be a normal projective variety, and let be an ample Cartier divisor on . Suppose that is not the projective space. We prove that the twisted cotangent sheaf is generically nef with respect to the polarisation . As an application we prove a Kobayashi-Ochiai theorem for foliations: if is a foliation such that , then is at most the rank of .