New sufficient conditions for a center and global phase portraits for polynomial systems.
In this paper we consider cubic polynomial systems of the form: x' = y + P(x, y), y' = −x + Q(x, y), where P and Q are polynomials of degree 3 without linear part. If M(x, y) is an integrating factor of the system, we propose its reciprocal V (x, y) = 1 / M(x,y) as a linear function of certain coefficients of the system. We find in this way several new sets of sufficient conditions for a center. The resulting integrating factors are of Darboux type and the first integrals are in the Liouville form.By...