The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 8 of 8

Showing per page

Abelian integrals related to Morse polynomials and perturbations of plane hamiltonian vector fields

Lubomir Gavrilov (1999)

Annales de l'institut Fourier

Let 𝒜 be the real vector space of Abelian integrals I ( h ) = { H h } R ( x , y ) d x d y , h [ 0 , h ˜ ] where H ( x , y ) = ( x 2 + y 2 ) / 2 + ... is a fixed real polynomial, R ( x , y ) is an arbitrary real polynomial and { H h } , h [ 0 , h ˜ ] , is the interior of the oval of H which surrounds the origin and tends to it as h 0 . We prove that if H ( x , y ) is a semiweighted homogeneous polynomial with only Morse critical points, then 𝒜 is a free finitely generated module over the ring of real polynomials [ h ] , and compute its rank. We find the generators of 𝒜 in the case when H is an arbitrary cubic polynomial. Finally we...

An attraction result and an index theorem for continuous flows on n × [ 0 , )

Klaudiusz Wójcik (1997)

Annales Polonici Mathematici

We study the behavior of a continuous flow near a boundary. We prove that if φ is a flow on E = n + 1 for which E = n × 0 is an invariant set and S ⊂ ∂E is an isolated invariant set, with non-zero homological Conley index, then there exists an x in EE such that either α(x) or ω(x) is in S. We also prove an index theorem for a flow on n × [ 0 , ) .

Currently displaying 1 – 8 of 8

Page 1