Lagrangian tori in a sympletic vector space and global symplectomorphisms.
Regular Poisson structures with fixed characteristic foliation F are described by means of foliated symplectic forms. Associated to each of these structures, there is a class in the second group of foliated cohomology H2(F). Using a foliated version of Moser's lemma, we study the isotopy classes of these structures in relation with their cohomology class. Explicit examples, with dim F = 2, are described.
We show that locally conformal cosymplectic manifolds may be seen as generalized phase spaces of time-dependent Hamiltonian systems. Thus we extend the results of I. Vaisman for the time-dependent case.
We use the properties of to construct functions associated with the elements of the lagrangian grassmannian (n) which generalize the Maslov index on Mp(n) defined by J. Leray in his “Lagrangian Analysis”. We deduce from these constructions the identity between and a subset of , equipped with appropriate algebraic and topological structures.
A mixed formulation is given for elastic problems. Existence and uniqueness of the discretized problem are given for conformal continuous interpolations for the stress tensor components and for the components of the displacement vector. A counterpart of the problem is discussed in the case of an even-dimensional Euclidean space with an associated Hamiltonian vector field and the Poisson structure. For conformal interpolations of the same order the question remains open.