The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 101 –
106 of
106
On décrit une approche homologique des systèmes dynamiques contraints. Cette approche, directement inspirée des travaux de D. McMullan et de M. Henneaux concernant le formalisme de Batalin, Fradkin et Vilkovisky, contient une interprétation des fantômes et de leurs conjugués. Dans le cadre des systèmes dans l’espace des phases, la construction se fait en deux étapes. La première étape consiste à construire une algèbre différentielle graduée dont la cohomologie en degré zéro est l’espace des observables...
Some of the completely integrable Hamiltonian systems obtained through Adler-Kostant-Symes theorem rely on two distinct Lie algebra structures on the same underlying vector space. We study here the cases when two structures are linked together by deformations.
We study some properties of the k-symplectic Hamiltonian systems in analogy with the well-known classical Hamiltonian systems. The integrability of k-symplectic Hamiltonian systems and the relationships with the Nambu's statistical mechanics are given.
Horizontal systems of rays arise in the study of integral curves of Hamiltonian systems on T*X, which are tangent to a given distribution V of hyperplanes on X. We investigate the local properties of systems of rays for general pairs (H,V) as well as for Hamiltonians H such that the corresponding Hamiltonian vector fields are horizontal with respect to V. As an example we explicitly calculate the space of horizontal geodesics and the corresponding systems of rays for the canonical distribution...
Currently displaying 101 –
106 of
106