Page 1 Next

Displaying 1 – 20 of 85

Showing per page

On ( 1 , 1 ) -tensor fields on symplectic manifolds

Anton Dekrét (1999)

Archivum Mathematicum

Two symplectic structures on a manifold M determine a (1,1)-tensor field on M . In this paper we study some properties of this field. Conversely, if A is (1,1)-tensor field on a symplectic manifold ( M , ω ) then using the natural lift theory we find conditions under which ω A , ω A ( X , Y ) = ω ( A X , Y ) , is symplectic.

On a theorem of Chekanov

Emmanuel Ferrand (1997)

Banach Center Publications

A proof of the Chekanov theorem is discussed from a geometric point of view. Similar results in the context of projectivized cotangent bundles are proved. Some applications are given.

On control theory and its applications to certain problems for Lagrangian systems. On hyperimpulsive motions for these. II. Some purely mathematical considerations for hyper-impulsive motions. Applications to Lagrangian systems

Aldo Bressan (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

See Summary in Note I. First, on the basis of some results in [2] or [5]-such as Lemmas 8.1 and 10.1-the general (mathematical) theorems on controllizability proved in Note I are quickly applied to (mechanic) Lagrangian systems. Second, in case Σ , χ and M satisfy conditions (11.7) when 𝒬 is a polynomial in γ ˙ , conditions (C)-i.e. (11.8) and (11.7) with 𝒬 0 -are proved to be necessary for treating satisfactorily Σ 's hyper-impulsive motions (in which positions can suffer first order discontinuities)....

On control theory and its applications to certain problems for Lagrangian systems. On hyper-impulsive motions for these. III. Strengthening of the characterizations performed in parts I and II, for Lagrangian systems. An invariance property.

Aldo Bressan (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In [1] I and II various equivalence theorems are proved; e.g. an ODE ( ) z ˙ = F ( t , z , u , u ˙ ) ( m ) with a scalar control u = u ( ) is linear w.r.t. u ˙ iff ( α ) its solution z ( u , ) with given initial conditions (chosen arbitrarily) is continuous w.r.t. u in a certain sense, or iff ( β ) z

On D’Alembert’s Principle

Larry M. Bates, James M. Nester (2011)

Communications in Mathematics

A formulation of the D’Alembert principle as the orthogonal projection of the acceleration onto an affine plane determined by nonlinear nonholonomic constraints is given. Consequences of this formulation for the equations of motion are discussed in the context of several examples, together with the attendant singular reduction theory.

Currently displaying 1 – 20 of 85

Page 1 Next