Page 1 Next

Displaying 1 – 20 of 26

Showing per page

Non singular Hamiltonian systems and geodesic flows on surfaces with negative curvature.

Ernesto A. Lacomba, J. Guadalupe Reyes (1998)

Publicacions Matemàtiques

We extend here results for escapes in any given direction of the configuration space of a mechanical system with a non singular bounded at infinity homogeneus potential of degree -1, when the energy is positive. We use geometrical methods for analyzing the parallel and asymptotic escapes of this type of systems. By using Riemannian geometry methods we prove under suitable conditions on the potential that all the orbits escaping in a given direction are asymptotically parallel among themselves. We...

Non-holonomic mechanical systems in jet bundles.

Manuel de León, David Martín de Diego (1996)

Extracta Mathematicae

In this paper we present a geometrical formulation for Lagrangian systems subjected to non-holonomic constraints in terms of jet bundles. Cosymplectic geometry and almost product structures are used to obtained the constrained dynamics without using Lagrange multipliers method.

Non-integrability of certain Hamiltonian systems. Applications of the Morales-Ramis differential Galois extension of Ziglin theory

Andrzej J. Maciejewski (2002)

Banach Center Publications

The aim of this paper is to present two examples of non academic Hamiltonian systems for which the Morales-Ramis theory can be applied effectively. First, we investigate the Gross-Neveu system with n degrees of freedom. Till now it has been proved that this system is not integrable for n = 3. We give a simple proof that it is not completely integrable for an arbitrary n ≥ 3. Our second example is a natural generalisation of the Jacobi problem of a material point moving on an ellipsoid. We formulate...

Nonuniform center bunching and the genericity of ergodicity among C 1 partially hyperbolic symplectomorphisms

Artur Avila, Jairo Bochi, Amie Wilkinson (2009)

Annales scientifiques de l'École Normale Supérieure

We introduce the notion of nonuniform center bunching for partially hyperbolic diffeomorphims, and extend previous results by Burns–Wilkinson and Avila–Santamaria–Viana. Combining this new technique with other constructions we prove that C 1 -generic partially hyperbolic symplectomorphisms are ergodic. We also construct new examples of stably ergodic partially hyperbolic diffeomorphisms.

Normal forms of analytic perturbations of quasihomogeneous vector fields: Rigidity, invariant analytic sets and exponentially small approximation

Eric Lombardi, Laurent Stolovitch (2010)

Annales scientifiques de l'École Normale Supérieure

In this article, we study germs of holomorphic vector fields which are “higher order” perturbations of a quasihomogeneous vector field in a neighborhood of the origin of n , fixed point of the vector fields. We define a “Diophantine condition” on the quasihomogeneous initial part S which ensures that if such a perturbation of S is formally conjugate to S then it is also holomorphically conjugate to it. We study the normal form problem relatively to S . We give a condition on S that ensures that there...

Currently displaying 1 – 20 of 26

Page 1 Next