d...-Cohomology of Lagrangian Foliations.
We announce that a class of problems containing the classical periodically forced pendulum equation displays the main features of chaotic dynamics for a dense set of forcing terms in a space of periodic functions with zero mean value. The approach is based on global variational methods.
We consider the problem of Arnold’s diffusion for nearly integrable isochronous Hamiltonian systems. We prove a shadowing theorem which improves the known estimates for the diffusion time. We also justify for three time scales systems that the splitting of the separatrices is correctly predicted by the Poincaré-Melnikov function.
For a positive integer n and R>0, we set . Given R>1 and n≥4 we construct a sequence of analytic perturbations (H j) of the completely integrable Hamiltonian on , with unstable orbits for which we can estimate the time of drift in the action space. These functions H j are analytic on a fixed complex neighborhood V of , and setting the time of drift of these orbits is smaller than (C(1/ɛ j)1/2(n-3)) for a fixed constant c>0. Our unstable orbits stay close to a doubly resonant surface,...
It is shown how to extend the formal variational calculus in order to incorporate integrals of divergences into it. Such a generalization permits to study nontrivial boundary problems in field theory on the base of canonical formalism.