Displaying 121 – 140 of 517

Showing per page

Exact asymptotics of nonlinear difference equations with levels 1 and 1 +

G.K Immink (2008)

Annales de la faculté des sciences de Toulouse Mathématiques

We study a class of nonlinear difference equations admitting a 1 -Gevrey formal power series solution which, in general, is not 1 - (or Borel-) summable. Using right inverses of an associated difference operator on Banach spaces of so-called quasi-functions, we prove that this formal solution can be lifted to an analytic solution in a suitable domain of the complex plane and show that this analytic solution is an accelero-sum of the formal power series.

Existence and global attractivity of periodic solutions in a higher order difference equation

Chuanxi Qian, Justin Smith (2018)

Archivum Mathematicum

Consider the following higher order difference equation x ( n + 1 ) = f ( n , x ( n ) ) + g ( n , x ( n - k ) ) , n = 0 , 1 , where f ( n , x ) and g ( n , x ) : { 0 , 1 , } × [ 0 , ) [ 0 , ) are continuous functions in x and periodic functions in n with period p , and k is a nonnegative integer. We show the existence of a periodic solution { x ˜ ( n ) } under certain conditions, and then establish a sufficient condition for { x ˜ ( n ) } to be a global attractor of all nonnegative solutions of the equation. Applications to Riccati difference equation and some other difference equations derived from mathematical biology are also given.

Existence criteria for positive solutions of a nonlinear difference inequality

Sui Cheng, Guang Zhang (2000)

Annales Polonici Mathematici

This paper is concerned with a class of nonlinear difference inequalities which include many different classes of difference inequalities and equations as special cases. By means of a Riccati type transformation, necessary and sufficient conditions for the existence of eventually positive solutions and positive nonincreasing solutions are obtained. Various type of comparison theorems are also derived as applications, which extends many theorems in the literature.

Existence of a positive solution to a nonlocal semipositone boundary value problem on a time scale

Christopher S. Goodrich (2013)

Commentationes Mathematicae Universitatis Carolinae

We consider the existence of at least one positive solution to the dynamic boundary value problem - y Δ Δ ( t ) = λ f ( t , y ( t ) ) , t [ 0 , T ] 𝕋 y ( 0 ) = τ 1 τ 2 F 1 ( s , y ( s ) ) Δ s y σ 2 ( T ) = τ 3 τ 4 F 2 ( s , y ( s ) ) Δ s , where 𝕋 is an arbitrary time scale with 0 < τ 1 < τ 2 < σ 2 ( T ) and 0 < τ 3 < τ 4 < σ 2 ( T ) satisfying τ 1 , τ 2 , τ 3 , τ 4 𝕋 , and where the boundary conditions at t = 0 and t = σ 2 ( T ) can be both nonlinear and nonlocal. This extends some recent results on second-order semipositone dynamic boundary value problems, and we illustrate these extensions with some examples.

Existence of nonoscillatory solutions to third order neutral type difference equations with delay and advanced arguments

Srinivasan Selvarangam, Sethurajan A. Rupadevi, Ethiraju Thandapani, Sandra Pinelas (2021)

Mathematica Bohemica

In this paper, we present several sufficient conditions for the existence of nonoscillatory solutions to the following third order neutral type difference equation Δ 3 ( x n + a n x n - l + b n x n + m ) + p n x n - k - q n x n + r = 0 , n n 0 via Banach contraction principle. Examples are provided to illustrate the main results. The results obtained in this paper extend and complement some of the existing results.

Currently displaying 121 – 140 of 517