Error Estimates for Miller's Algorithm.
We study a class of nonlinear difference equations admitting a -Gevrey formal power series solution which, in general, is not - (or Borel-) summable. Using right inverses of an associated difference operator on Banach spaces of so-called quasi-functions, we prove that this formal solution can be lifted to an analytic solution in a suitable domain of the complex plane and show that this analytic solution is an accelero-sum of the formal power series.
Consider the following higher order difference equation where and are continuous functions in and periodic functions in with period , and is a nonnegative integer. We show the existence of a periodic solution under certain conditions, and then establish a sufficient condition for to be a global attractor of all nonnegative solutions of the equation. Applications to Riccati difference equation and some other difference equations derived from mathematical biology are also given.
This paper is concerned with a class of nonlinear difference inequalities which include many different classes of difference inequalities and equations as special cases. By means of a Riccati type transformation, necessary and sufficient conditions for the existence of eventually positive solutions and positive nonincreasing solutions are obtained. Various type of comparison theorems are also derived as applications, which extends many theorems in the literature.
We consider the existence of at least one positive solution to the dynamic boundary value problem where is an arbitrary time scale with and satisfying , , , , and where the boundary conditions at and can be both nonlinear and nonlocal. This extends some recent results on second-order semipositone dynamic boundary value problems, and we illustrate these extensions with some examples.
In this paper, we present several sufficient conditions for the existence of nonoscillatory solutions to the following third order neutral type difference equation via Banach contraction principle. Examples are provided to illustrate the main results. The results obtained in this paper extend and complement some of the existing results.