A first order -difference system for the -type Jackson integral and its applications.
We first recall Malgrange’s definition of -groupoid and we define a Galois -groupoid for -difference equations. Then, we compute explicitly the Galois -groupoid of a constant linear -difference system, and show that it corresponds to the -difference Galois group. Finally, we establish a conjugation between the Galois -groupoids of two equivalent constant linear -difference systems, and define a local Galois -groupoid for Fuchsian linear -difference systems by giving its realizations.
The aim of this contribution is to study the role of the coefficient in the qualitative theory of the equation , where with . We discuss sign and smoothness conditions posed on , (non)availability of some transformations, and mainly we show how the behavior of , along with the behavior of the graininess of the time scale, affect some comparison results and (non)oscillation criteria. At the same time we provide a survey of recent results acquired by sophisticated modifications of the Riccati...
Using the techniques developed by Jean Ecalle for the study of nonlinear differential equations, we prove that the -difference equationwith () and is analytically conjugated to one of the following equations :