Previous Page 2

Displaying 21 – 38 of 38

Showing per page

Motion of spiral-shaped polygonal curves by nonlinear crystalline motion with a rotating tip motion

Tetsuya Ishiwata (2015)

Mathematica Bohemica

We consider a motion of spiral-shaped piecewise linear curves governed by a crystalline curvature flow with a driving force and a tip motion which is a simple model of a step motion of a crystal surface. We extend our previous result on global existence of a spiral-shaped solution to a linear crystalline motion for a power type nonlinear crystalline motion with a given rotating tip motion. We show that self-intersection of the solution curves never occurs and also show that facet extinction never...

Multiplicity and uniqueness for a class of discrete fractional boundary value problems

Lv Zhanmei, Gong Yanping, Chen Yi (2014)

Applications of Mathematics

The paper deals with a class of discrete fractional boundary value problems. We construct the corresponding Green's function, analyse it in detail and establish several of its key properties. Then, by using the fixed point index theory, the existence of multiple positive solutions is obtained, and the uniqueness of the solution is proved by a new theorem on an ordered metric space established by M. Jleli, et al. (2012).

Multipoint boundary value problems for discrete equations

Pavel Drábek, Harold Bevan Thompson, Christopher Tisdell (2001)

Commentationes Mathematicae Universitatis Carolinae

In this work we establish existence results for solutions to multipoint boundary value problems for second order difference equations with fully nonlinear boundary conditions involving two, three and four points. Our results are also applied to systems.

Multisommabilité des séries entières solutions formelles d’une équation aux q -différences linéaire analytique

Fabienne Marotte, Changgui Zhang (2000)

Annales de l'institut Fourier

Nous introduisons une version q -analogue du procédé d’accélération élémentaire d’Écalle-Martinet-Ramis et définissons la notion de série entière G q -multisommable. Nous montrons que toute série entière solution formelle d’une équation aux q -différences linéaire analytique est G q -multisommable.

Multisummability for some classes of difference equations

Boele L. J. Braaksma, Bernard F. Faber (1996)

Annales de l'institut Fourier

This paper concerns difference equations y ( x + 1 ) = G ( x , y ) where G takes values in C n and G is meromorphic in x in a neighborhood of in C and holomorphic in a neighborhood of 0 in C n . It is shown that under certain conditions on the linear part of G , formal power series solutions in x - 1 / p , p N , are multisummable. Moreover, it is shown that formal solutions may always be lifted to holomorphic solutions in upper and lower halfplanes, but in general these solutions are not uniquely determined by the formal solutions.

Currently displaying 21 – 38 of 38

Previous Page 2