Displaying 201 – 220 of 1591

Showing per page

Arithmetic based fractals associated with Pascal's triangle.

T.W. Gamelin, Mamiron A. Mnatsakanian (2005)

Publicacions Matemàtiques

Our goal is to study Pascal-Sierpinski gaskets, which are certain fractal sets defined in terms of divisibility of entries in Pascal's triangle. The principal tool is a carry rule for the addition of the base-q representation of coordinates of points in the unit square. In the case that q = p is prime, we connect the carry rule to the power of p appearing in the prime factorization of binomial coefficients. We use the carry rule to define a family of fractal subsets Bqr of the unit square, and we...

Arithmetical aspects of certain functional equations

Lutz G. Lucht (1997)

Acta Arithmetica

The classical system of functional equations       1 / n ν = 0 n - 1 F ( ( x + ν ) / n ) = n - s F ( x ) (n ∈ ℕ) with s ∈ ℂ, investigated for instance by Artin (1931), Yoder (1975), Kubert (1979), and Milnor (1983), is extended to       1 / n ν = 0 n - 1 F ( ( x + ν ) / n ) = d = 1 λ n ( d ) F ( d x ) (n ∈ ℕ) with complex valued sequences λ n . This leads to new results on the periodic integrable and the aperiodic continuous solutions F:ℝ₊ → ℂ interrelating the theory of functional equations and the theory of arithmetic functions.

Asymptotic analysis of a class of functional equations and applications

P. J. Grabner, H. Prodinger, R. F. Tichy (1993)

Journal de théorie des nombres de Bordeaux

Flajolet and Richmond have invented a method to solve a large class of divide-and-conquer recursions. The essential part of it is the asymptotic analysis of a certain generating function for z by means of the Mellin transform. In this paper this type of analysis is performed for a reasonably large class of generating functions fulfilling a functional equation with polynomial coefficients. As an application, the average life time of a party of N people is computed, where each person advances one...

Asymptotic behaviour of solutions of some linear delay differential equations

Jan Čermák (2000)

Mathematica Bohemica

In this paper we investigate the asymptotic properties of all solutions of the delay differential equation y’(x)=a(x)y((x))+b(x)y(x),      xI=[x0,). We set up conditions under which every solution of this equation can be represented in terms of a solution of the differential equation z’(x)=b(x)z(x),      xI and a solution of the functional equation |a(x)|((x))=|b(x)|(x),      xI.

Asymptotic estimation for functional differential equations with several delays

Jan Čermák (1999)

Archivum Mathematicum

We discuss the asymptotic behaviour of all solutions of the functional differential equation y ' ( x ) = i = 1 m a i ( x ) y ( τ i ( x ) ) + b ( x ) y ( x ) , where b ( x ) < 0 . The asymptotic bounds are given in terms of a solution of the functional nondifferential equation i = 1 m | a i ( x ) | ω ( τ i ( x ) ) + b ( x ) ω ( x ) = 0 .

Asymptotic properties of differential equations with advanced argument

Jan Čermák (2000)

Czechoslovak Mathematical Journal

The paper discusses the asymptotic properties of solutions of the scalar functional differential equation y ' ( x ) = a y ( τ ( x ) ) + b y ( x ) , x [ x 0 , ) of the advanced type. We show that, given a specific asymptotic behaviour, there is a (unique) solution y ( x ) which behaves in this way.

Backward-iteration sequences with bounded hyperbolic steps for analytic self-maps of the disk.

Pietro Poggi-Corradini (2003)

Revista Matemática Iberoamericana

A lot is known about the forward iterates of an analytic function which is bounded by 1 in modulus on the unit disk D. The Denjoy-Wolff Theorem describes their convergence properties and several authors, from the 1880's to the 1980's, have provided conjugations which yield very precise descriptions of the dynamics. Backward-iteration sequences are of a different nature because a point could have infinitely many preimages as well as none. However, if we insist in choosing preimages that are at a...

Currently displaying 201 – 220 of 1591