Displaying 1181 – 1200 of 1591

Showing per page

Quelques remarques sur les familles canoniques de polynômes générateurs pour l'exponentielle

Michel Langevin (1997)

Annales de l'institut Fourier

Soit K un corps commutatif. Chercher une série formelle S ( X , T ) K [ [ X , T ] ] vérifiant S ( X + Y , T ) / S ( X , T ) K [ [ Y , T ] ] conduit naturellement à étudier l’application U ( T ) ( U ( T ) ) X , U ( T ) étant une unité de l’algèbre K [ [ T ] ] , et à ramener les solutions à la forme S ( X , T ) = n 0 H n ( X ) T n , ( H n ( X ) ) étant une suite de K [ X ] vérifiant les “identités multinomiales” : ( μ ) H n ( X 1 + ... + X k ) = α 1 + ... + α k = n H α 1 ( X 1 ) ... H α k ( X k ) ( n , k 0 ) . Après mise à l’écart par des lemmes combinatoires du cas caract ( K ) > 0 (les solutions sont triviales), on caractérise de plusieurs manières les solutions. On peut les faire coïncider avec l’ensemble NW des suites de polynômes (ou séries génératrices...

Récurrences 2 - et 3 -mahlériennes

Bernard Randé (1993)

Journal de théorie des nombres de Bordeaux

On sait (Cobham) qu’une suite 2 - et 3 -automatique est une suite rationnelle. Une question de Loxton et van der Poorten étend ce résultat au cas 2 - et 3 -régulier. On montre dans cet article que, si une suite vérifie une récurrence 2 - et 3 -mahlérienne d’ordre un, elle est rationnelle.

Refinement type equations: sources and results

Rafał Kapica, Janusz Morawiec (2013)

Banach Center Publications

It has been proved recently that the two-direction refinement equation of the form f ( x ) = n c n , 1 f ( k x - n ) + n c n , - 1 f ( - k x - n ) can be used in wavelet theory for constructing two-direction wavelets, biorthogonal wavelets, wavelet packages, wavelet frames and others. The two-direction refinement equation generalizes the classical refinement equation f ( x ) = n c f ( k x - n ) , which has been used in many areas of mathematics with important applications. The following continuous extension of the classical refinement equation f ( x ) = c ( y ) f ( k x - y ) d y has also various interesting applications....

Regular fractional iteration of convex functions

Marek Kuczma (1980)

Annales Polonici Mathematici

The existence of a unique C 1 solution φ of equation (1) is proved under the condition that f: I → I is convex or concave and of class C 1 in I, 0 < f(x) < x in I*, and f’(x) > 0 in I. Here I = [0, a] or [0, a), 0 < a ≤ ∞, and I* = I 0.

Currently displaying 1181 – 1200 of 1591