On value-relations, functional relations and singularities of Mordell-Tornheim and related triple zeta-functions
Previous Page 11
Kohji Matsumoto, Takashi Nakamura, Hiroyuki Ochiai, Hirofumi Tsumura (2008)
Acta Arithmetica
Bhardwaj, Vinod K., Bala, Indu (2007)
International Journal of Mathematics and Mathematical Sciences
Kohji Matsumoto, Hirofumi Tsumura (2006)
Annales de l’institut Fourier
We define Witten multiple zeta-functions associated with semisimple Lie algebras , of several complex variables, and prove the analytic continuation of them. These can be regarded as several variable generalizations of Witten zeta-functions defined by Zagier. In the case , we determine the singularities of this function. Furthermore we prove certain functional relations among this function, the Mordell-Tornheim double zeta-functions and the Riemann zeta-function. Using these relations, we prove...
Pehlivan, S. (1997)
International Journal of Mathematics and Mathematical Sciences
Mariusz Skałba (1998)
Mathematica Slovaca
Savaş, Ekrem (2008)
Journal of Inequalities and Applications [electronic only]
Eugen Kováč (2005)
Mathematica Slovaca
Seyhan, H., Sönmez, A. (1997)
Portugaliae Mathematica
G.M. Trojan (1986)
Numerische Mathematik
Ferenc Móricz (2004)
Colloquium Mathematicae
Schmidt’s Tauberian theorem says that if a sequence (xk) of real numbers is slowly decreasing and , then . The notion of slow decrease includes Hardy’s two-sided as well as Landau’s one-sided Tauberian conditions as special cases. We show that ordinary summability (C,1) can be replaced by the weaker assumption of statistical summability (C,1) in Schmidt’s theorem. Two recent theorems of Fridy and Khan are also corollaries of our Theorems 1 and 2. In the Appendix, we present a new proof of Vijayaraghavan’s...
Jean-Pierre Kahane, Hervé Queffélec (1997)
Annales de l'institut Fourier
L’article donne des réponses optimales ou presque optimales aux questions suivantes, qui remontent à Stieltjes, Landau et Bohr, et concernent des séries de Dirichlet
Caslav V. Stanojevic (1987/1988)
Mathematische Annalen
A. Waszak (1971)
Publications de l'Institut Mathématique [Elektronische Ressource]
Gill, John (1992)
International Journal of Mathematics and Mathematical Sciences
Previous Page 11