A general theorem covering many absolute summability methods
A general theorem concerning many absolute summability methods is proved.
W. Sulaiman (1999)
Colloquium Mathematicae
A general theorem concerning many absolute summability methods is proved.
Mishra, K.N., Srivastava, R.S.L. (1983/1984)
Portugaliae mathematica
R.T. Rajagopal (1974)
Mathematische Zeitschrift
E. Pap (1974)
Matematički Vesnik
Milivoje G. Lazić (1979)
Publications de l'Institut Mathématique
Sulaiman, W.T. (2001)
International Journal of Mathematics and Mathematical Sciences
Charles Swartz (1978)
Mathematische Zeitschrift
Flajolet, Philippe, Fusy, Eric, Gourdon, Xavier, Panario, Daniel, Pouyanne, Nicolas (2006)
The Electronic Journal of Combinatorics [electronic only]
Oktay Duman (2007)
Czechoslovak Mathematical Journal
Using the concept of -convergence we provide a Korovkin type approximation theorem by means of positive linear operators defined on an appropriate weighted space given with any interval of the real line. We also study rates of convergence by means of the modulus of continuity and the elements of the Lipschitz class.
Leindler, Laszlo (2007)
JIPAM. Journal of Inequalities in Pure & Applied Mathematics [electronic only]
P. Szüsz, K. Klee (1973)
Monatshefte für Mathematik
Tanović-Miller, N. (1980)
Publications de l'Institut Mathématique. Nouvelle Série
O'Hara, P.J., Osteen, R., Rodriguez, R.S. (1992)
International Journal of Mathematics and Mathematical Sciences
Bender, Edward A., Richmond, L.Bruce (1998)
The Electronic Journal of Combinatorics [electronic only]
Campbell, Geoffrey B. (1994)
International Journal of Mathematics and Mathematical Sciences
G. Bennett (1974)
Journal für die reine und angewandte Mathematik
P. Chandra (1972)
Matematički Vesnik
Leindler, Laszlo (2006)
JIPAM. Journal of Inequalities in Pure & Applied Mathematics [electronic only]
Eberhard L. Stark (1972)
Elemente der Mathematik
Jean-Pierre Ramis, Yasutaka Sibuya (1994)
Annales de l'institut Fourier
We give a new proof of multisummability of formal power series solutions of a non linear meromorphic differential equation. We use the recent Malgrange-Ramis definition of multisummability. The first proof of the main result is due to B. Braaksma. Our method of proof is very different: Braaksma used Écalle definition of multisummability and Laplace transform. Starting from a preliminary normal form of the differential equationthe idea of our proof is to interpret a formal power series solution...