On approximation by modified Bernstein polynomials.
A characterization of a generalized order of analytic functions of several complex variables by means of polynomial approximation and interpolation is established.
In this paper we extend the Duman-King idea of approximation of functions by positive linear operators preserving , . Using a modification of certain operators preserving and , we introduce operators which preserve and and next we define operators for -times differentiable functions. We show that and have better approximation properties than and .
Let be the space of all trigonometric polynomials of degree not greater than with complex coefficients. Arestov extended the result of Bernstein and others and proved that for and . We derive the multivariate version of the result of Golitschek and Lorentz for all trigonometric polynomials (with complex coeffcients) in variables of degree at most .
In this paper we introduce the notation of t-best approximatively compact sets, t-best approximation points, t-proximinal sets, t-boundedly compact sets and t-best proximity pair in fuzzy metric spaces. The results derived in this paper are more general than the corresponding results of metric spaces, fuzzy metric spaces, fuzzy normed spaces and probabilistic metric spaces.