On approximation by modified Bernstein polynomials.
Singh, Suresh P., Prasad, Govind (1985)
Publications de l'Institut Mathématique. Nouvelle Série
Adam Janik (1991)
Annales Polonici Mathematici
A characterization of a generalized order of analytic functions of several complex variables by means of polynomial approximation and interpolation is established.
J. Prasad, N. Jhunjhunwala (1971)
Publications de l'Institut Mathématique
Kulpa, Tomasz (1999)
International Journal of Mathematics and Mathematical Sciences
Min, G. (1996)
International Journal of Mathematics and Mathematical Sciences
Lucyna Rempulska, Karolina Tomczak (2008)
Commentationes Mathematicae Universitatis Carolinae
In this paper we extend the Duman-King idea of approximation of functions by positive linear operators preserving , . Using a modification of certain operators preserving and , we introduce operators which preserve and and next we define operators for -times differentiable functions. We show that and have better approximation properties than and .
Falaleev, L.P. (2001)
Sibirskij Matematicheskij Zhurnal
Singh, Suresh Prasad (1987)
Publications de l'Institut Mathématique. Nouvelle Série
Barrios, J.A., Betancor, J.J. (1992)
Portugaliae mathematica
Po Fang Hsieh (1978)
Archivum Mathematicum
Gerold Wagner (1991)
Monatshefte für Mathematik
Gregorac, R.J. (1989)
International Journal of Mathematics and Mathematical Sciences
Laiyi Zhu, Xingjun Zhao (2022)
Czechoslovak Mathematical Journal
Let be the space of all trigonometric polynomials of degree not greater than with complex coefficients. Arestov extended the result of Bernstein and others and proved that for and . We derive the multivariate version of the result of Golitschek and Lorentz for all trigonometric polynomials (with complex coeffcients) in variables of degree at most .
Q. Razi, S. Umar (1987)
Matematički Vesnik
Çiğdem Atakut, Nurhayat İspir (2004)
Mathematica Slovaca
Hervé Queffelec, Bahaman Saffari (1995)
The journal of Fourier analysis and applications [[Elektronische Ressource]]
Naser Abbasi, Hamid Mottaghi Golshan (2015)
Kybernetika
In this paper we introduce the notation of t-best approximatively compact sets, t-best approximation points, t-proximinal sets, t-boundedly compact sets and t-best proximity pair in fuzzy metric spaces. The results derived in this paper are more general than the corresponding results of metric spaces, fuzzy metric spaces, fuzzy normed spaces and probabilistic metric spaces.
M.E.A. El Tom (1979)
Numerische Mathematik
O. Widlund (1976/1977)
Numerische Mathematik
Naidu, S.V.R. (1992)
Publications de l'Institut Mathématique. Nouvelle Série