Displaying 181 – 200 of 3638

Showing per page

A remark on the centered n -dimensional Hardy-Littlewood maximal function

J. M. Aldaz (2000)

Czechoslovak Mathematical Journal

We study the behaviour of the n -dimensional centered Hardy-Littlewood maximal operator associated to the family of cubes with sides parallel to the axes, improving the previously known lower bounds for the best constants c n that appear in the weak type ( 1 , 1 ) inequalities.

A remark on the div-curl lemma

Pierre Gilles Lemarié-Rieusset (2012)

Studia Mathematica

We prove the div-curl lemma for a general class of function spaces, stable under the action of Calderón-Zygmund operators. The proof is based on a variant of the renormalization of the product introduced by S. Dobyinsky, and on the use of divergence-free wavelet bases.

A remark on the multipliers of the Haar basis of L¹[0,1]

H. M. Wark (2015)

Studia Mathematica

A proof of a necessary and sufficient condition for a sequence to be a multiplier of the normalized Haar basis of L¹[0,1] is given. This proof depends only on the most elementary properties of this system and is an alternative proof to that recently found by Semenov & Uksusov (2012). Additionally, representations are given, which use stochastic processes, of this multiplier norm and of related multiplier norms.

A restriction theorem for the Heisenberg motion

P. Ratnakumar, Rama Rawat, S. Thangavelu (1997)

Studia Mathematica

We prove a restriction theorem for the class-1 representations of the Heisenberg motion group. This is done using an improvement of the restriction theorem for the special Hermite projection operators proved in [13]. We also prove a restriction theorem for the Heisenberg group.

A rigidity phenomenon for the Hardy-Littlewood maximal function

Stefan Steinerberger (2015)

Studia Mathematica

The Hardy-Littlewood maximal function ℳ and the trigonometric function sin x are two central objects in harmonic analysis. We prove that ℳ characterizes sin x in the following way: Let f C α ( , ) be a periodic function and α > 1/2. If there exists a real number 0 < γ < ∞ such that the averaging operator ( A x f ) ( r ) = 1 / 2 r x - r x + r f ( z ) d z has a critical point at r = γ for every x ∈ ℝ, then f(x) = a + bsin(cx+d) for some a,b,c,d ∈ ℝ. This statement can be used to derive a characterization of trigonometric functions as those nonconstant...

A semi-discrete Littlewood-Paley inequality

J. M. Wilson (2002)

Studia Mathematica

We apply a decomposition lemma of Uchiyama and results of the author to obtain good weighted Littlewood-Paley estimates for linear sums of functions satisfying reasonable decay, smoothness, and cancellation conditions. The heart of our application is a combinatorial trick treating m-fold dilates of dyadic cubes. We use our estimates to obtain new weighted inequalities for Bergman-type spaces defined on upper half-spaces in one and two parameters, extending earlier work of R. L. Wheeden and the author....

A sharp bound for a sine polynomial

Horst Alzer, Stamatis Koumandos (2003)

Colloquium Mathematicae

We prove that | k = 1 n s i n ( ( 2 k - 1 ) x ) / k | < S i ( π ) = 1 . 8519 . . . for all integers n ≥ 1 and real numbers x. The upper bound Si(π) is best possible. This result refines inequalities due to Fejér (1910) and Lenz (1951).

A sharp correction theorem

S. Kisliakov (1995)

Studia Mathematica

Under certain conditions on a function space X, it is proved that for every L -function f with f 1 one can find a function φ, 0 ≤ φ ≤ 1, such that φf ∈ X, m e s φ 1 ɛ f 1 and φ f X c o n s t ( 1 + l o g ɛ - 1 ) . For X one can take, e.g., the space of functions with uniformly bounded Fourier sums, or the space of L -functions on n whose convolutions with a fixed finite collection of Calderón-Zygmund kernels are also bounded.

A sharp estimate for bilinear Littlewood-Paley operator.

Lanzhe Liu (2005)

RACSAM

Se establece una estimación fina para el operador bilineal de Littlewood-Paley. Como aplicación se obtienen desigualdades para la norma ponderada y estimaciones del tipo L log L para el operador bilineal.

A sharp estimate for the Hardy-Littlewood maximal function

Loukas Grafakos, Stephen Montgomery-Smith, Olexei Motrunich (1999)

Studia Mathematica

The best constant in the usual L p norm inequality for the centered Hardy-Littlewood maximal function on 1 is obtained for the class of all “peak-shaped” functions. A function on the line is called peak-shaped if it is positive and convex except at one point. The techniques we use include variational methods.

A sharp rearrangement inequality for the fractional maximal operator

A. Cianchi, R. Kerman, B. Opic, L. Pick (2000)

Studia Mathematica

We prove a sharp pointwise estimate of the nonincreasing rearrangement of the fractional maximal function of ⨍, M γ , by an expression involving the nonincreasing rearrangement of ⨍. This estimate is used to obtain necessary and sufficient conditions for the boundedness of M γ between classical Lorentz spaces.

Currently displaying 181 – 200 of 3638