On the boundedness of fractional -maximal operators in the Lorentz spaces .
In the paper we find conditions on the pair which ensure the boundedness of the maximal operator and the Calderón-Zygmund singular integral operators from one generalized Morrey space to another , , and from the space to the weak space . As applications, we get some estimates for uniformly elliptic operators on generalized Morrey spaces.
The notion of bundle convergence in von Neumann algebras and their -spaces for single (ordinary) sequences was introduced by Hensz, Jajte, and Paszkiewicz in 1996. Bundle convergence is stronger than almost sure convergence in von Neumann algebras. Our main result is the extension of the two-parameter Rademacher-Men’shov theorem from the classical commutative case to the noncommutative case. To our best knowledge, this is the first attempt to adopt the notion of bundle convergence to multiple series....
We characterize the Choquet integrals associated to Bessel capacities in terms of the preduals of the Sobolev multiplier spaces. We make use of the boundedness of local Hardy-Littlewood maximal function on the preduals of the Sobolev multiplier spaces and the minimax theorem as the main tools for the characterizations.
The Integral, , and Derivative, , operators of order , with a function of positive lower type and upper type less than , were defined in [HV2] in the setting of spaces of homogeneous-type. These definitions generalize those of the fractional integral and derivative operators of order , where , given in [GSV]. In this work we show that the composition is a singular integral operator. This result in addition with the results obtained in [HV2] of boundedness of and or the -theorems proved...
In the present paper, Daubechies' wavelets and the computation of their scaling coefficients are briefly reviewed. Then a new method of computation is proposed. This method is based on the work [7] concerning a new orthonormality condition and relations among scaling moments, respectively. For filter lengths up to 16, the arising system can be explicitly solved with algebraic methods like Gröbner bases. Its simple structure allows one to find quickly all possible solutions.