Displaying 301 – 320 of 3638

Showing per page

Almost periodic solutions with a prescribed spectrum of systems of linear and quasilinear differential equations with almost periodic coefficients and constant time lag (Cauchy integral)

Alexandr Fischer (1999)

Mathematica Bohemica

This paper generalizes earlier author's results where the linear and quasilinear equations with constant coefficients were treated. Here the method of limit passages and a fixed-point theorem is used for the linear and quasilinear equations with almost periodic coefficients.

Almost-periodic solutions in various metrics of higher-order differential equations with a nonlinear restoring term

Ján Andres, Alberto Maria Bersani, Lenka Radová (2006)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Almost-periodic solutions in various metrics (Stepanov, Weyl, Besicovitch) of higher-order differential equations with a nonlinear Lipschitz-continuous restoring term are investigated. The main emphasis is focused on a Lipschitz constant which is the same as for uniformly almost-periodic solutions treated in [A1] and much better than those from our investigations for differential systems in [A2], [A3], [AB], [ABL], [AK]. The upper estimates of ε for ε -almost-periods of solutions and their derivatives...

Alternative characterisations of Lorentz-Karamata spaces

David Eric Edmunds, Bohumír Opic (2008)

Czechoslovak Mathematical Journal

We present new formulae providing equivalent quasi-norms on Lorentz-Karamata spaces. Our results are based on properties of certain averaging operators on the cone of non-negative and non-increasing functions in convenient weighted Lebesgue spaces. We also illustrate connections between our results and mapping properties of such classical operators as the fractional maximal operator and the Riesz potential (and their variants) on the Lorentz-Karamata spaces.

An algebraic construction of discrete wavelet transforms

Jaroslav Kautský (1993)

Applications of Mathematics

Discrete wavelets are viewed as linear algebraic transforms given by banded orthogonal matrices which can be built up from small matrix blocks satisfying certain conditions. A generalization of the finite support Daubechies wavelets is discussed and some special cases promising more rapid signal reduction are derived.

An analogue of Gutzmer's formula for Hermite expansions

S. Thangavelu (2008)

Studia Mathematica

We prove an analogue of Gutzmer's formula for Hermite expansions. As a consequence we obtain a new proof of a characterisation of the image of L²(ℝⁿ) under the Hermite semigroup. We also obtain some new orthogonality relations for complexified Hermite functions.

Currently displaying 301 – 320 of 3638