A direct proof of van der Vaart's theorem
The aim of this paper is to prove a quantitative version of Shapiro's uncertainty principle for orthonormal sequences in the setting of Gabor-Hankel theory.
Consider the linear congruence equation for , . Let denote the generalized gcd of and which is the largest with dividing and simultaneously. Let be all positive divisors of . For each , define . K. Bibak et al. (2016) gave a formula using Ramanujan sums for the number of solutions of the above congruence equation with some gcd restrictions on . We generalize their result with generalized gcd restrictions on and prove that for the above linear congruence, the number of solutions...
The object of this note is to generalize some Fourier inequalities.
The construction of nonseparable and compactly supported orthonormal wavelet bases of L 2(R n); n ≥ 2, is still a challenging and an open research problem. In this paper, we provide a special method for the construction of such wavelet bases. The wavelets constructed by this method are dyadic wavelets. Also, we show that our proposed method can be adapted for an eventual construction of multidimensional orthogonal multiwavelet matrix masks, candidates for generating multidimensional multiwavelet...
Let be a sequence of arbitrary complex numbers, let α,β > -1, let Pₙα,βn=0+∞
A generalized convolution with a weight function for the Fourier cosine and sine transforms is introduced. Its properties and applications to solving a system of integral equations are considered.
The limit behavior of the solutions of Signorini’s type-like problems in periodically perforated domains with period is studied. The main feature of this limit behaviour is the existence of a critical size of the perforations that separates different emerging phenomena as . In the critical case, it is shown that Signorini’s problem converges to a problem associated to a new operator which is the sum of a standard homogenized operator and an extra zero order term (“strange term”) coming from the...