Loading [MathJax]/extensions/MathZoom.js
- Subjects
- 42-XX Harmonic analysis on Euclidean spaces
Displaying 161 –
180 of
222
For the Schrödinger equation, on a torus, an arbitrary non-empty open set provides control and observability of the solution: . We show that the same result remains true for where , and is a (rational or irrational) torus. That extends the results of [1], and [8] where the observability was proved for and conjectured for . The higher dimensional generalization remains open for .
A control system of the second order in time with control
is considered. If the
system is controllable in a strong sense and
uT is the control
steering the system to the rest at time
T,
then the L2–norm of uT decreases as
while the –norm of uT is approximately constant.
The proof is based on the moment approach
and properties of the relevant exponential family. Results are
applied to the wave equation with boundary or distributed controls.
We prove some extrapolation results for operators bounded on radial functions with p ∈ (p₀,p₁) and deduce some endpoint estimates. We apply our results to prove the almost everywhere convergence of the spherical partial Fourier integrals and to obtain estimates on maximal Bochner-Riesz type operators acting on radial functions in several weighted spaces.
We study the boundedness in of the projections onto spaces of functions with spectrum contained in horizontal strips. We obtain some results concerning convergence along nonisotropic regions of harmonic extensions of functions in with spectrum included in these horizontal strips.
Generalized conjugate partial sums of Fourier series are used to find jumps of functions. The rate of convergence is studied and sharp results are obtained.
We consider convergence of thresholding type approximations with regard to general complete minimal systems eₙ in a quasi-Banach space X. Thresholding approximations are defined as follows. Let eₙ* ⊂ X* be the conjugate (dual) system to eₙ; then define for ε > 0 and x ∈ X the thresholding approximations as , where . We study a generalized version of that we call the weak thresholding approximation. We modify the in the following way. For ε > 0, t ∈ (0,1) we set and consider the weak...
We study the following nonlinear method of approximation by trigonometric polynomials. For a periodic function f we take as an approximant a trigonometric polynomial of the form , where is a set of cardinality m containing the indices of the m largest (in absolute value) Fourier coefficients f̂(k) of the function f. Note that Gₘ(f) gives the best m-term approximant in the L₂-norm, and therefore, for each f ∈ L₂, ||f-Gₘ(f)||₂ → 0 as m → ∞. It is known from previous results that in the case of...
We investigate some convergence and divergence properties of the logarithmic means of quadratic partial sums of double Fourier series of functions, in measure and in the L Lebesgue norm.
We establish a connection between the L² norm of sums of dilated functions whose jth Fourier coefficients are for some α ∈ (1/2,1), and the spectral norms of certain greatest common divisor (GCD) matrices. Utilizing recent bounds for these spectral norms, we obtain sharp conditions for the convergence in L² and for the almost everywhere convergence of series of dilated functions.
We show that -bounded singular integrals in metric spaces with respect to general measures and kernels converge weakly. This implies a kind of average convergence almost everywhere. For measures with zero density we prove the almost everywhere existence of principal
values.
Currently displaying 161 –
180 of
222