Page 1 Next

Displaying 1 – 20 of 349

Showing per page

( H p , L p ) -type inequalities for the two-dimensional dyadic derivative

Ferenc Weisz (1996)

Studia Mathematica

It is shown that the restricted maximal operator of the two-dimensional dyadic derivative of the dyadic integral is bounded from the two-dimensional dyadic Hardy-Lorentz space H p , q to L p , q (2/3 < p < ∞, 0 < q ≤ ∞) and is of weak type ( L 1 , L 1 ) . As a consequence we show that the dyadic integral of a ∞ function f L 1 is dyadically differentiable and its derivative is f a.e.

[unknown]

Krystian Kazaniecki, Michał Wojciechowski (0)

Annales de l’institut Fourier

[unknown]

G. Kyriazis (1998)

Studia Mathematica

We study smoothness spaces generated by maximal functions related to the local approximation errors of integral operators. It turns out that in certain cases these smoothness classes coincide with the spaces C p α ( d ) , 0 < p≤∞, introduced by DeVore and Sharpley [DS] by means of the so-called sharp maximal functions of Calderón and Scott. As an application we characterize the C p α ( d ) spaces in terms of the coefficients of wavelet decompositions.

ε-Kronecker and I₀ sets in abelian groups, III: interpolation by measures on small sets

Colin C. Graham, Kathryn E. Hare (2005)

Studia Mathematica

Let U be an open subset of a locally compact abelian group G and let E be a subset of its dual group Γ. We say E is I₀(U) if every bounded sequence indexed by E can be interpolated by the Fourier transform of a discrete measure supported on U. We show that if E·Δ is I₀ for all finite subsets Δ of a torsion-free Γ, then for each open U ⊂ G there exists a finite set F ⊂ E such that E∖F is I₀(U). When G is connected, F can be taken to be empty. We obtain a much stronger form of that for Hadamard sets...

ε-Kronecker and I₀ sets in abelian groups, IV: interpolation by non-negative measures

Colin C. Graham, Kathryn E. Hare (2006)

Studia Mathematica

A subset E of a discrete abelian group is a "Fatou-Zygmund interpolation set" (FZI₀ set) if every bounded Hermitian function on E is the restriction of the Fourier-Stieltjes transform of a discrete, non-negative measure. We show that every infinite subset of a discrete abelian group contains an FZI₀ set of the same cardinality (if the group is torsion free, a stronger interpolation property holds) and that ε-Kronecker sets are FZI₀ (with that stronger interpolation property). ...

Ψ-pseudodifferential operators and estimates for maximal oscillatory integrals

Carlos E. Kenig, Wolfgang Staubach (2007)

Studia Mathematica

We define a class of pseudodifferential operators with symbols a(x,ξ) without any regularity assumptions in the x variable and explore their L p boundedness properties. The results are applied to obtain estimates for certain maximal operators associated with oscillatory singular integrals.

ω-Calderón-Zygmund operators

Sijue Wu (1995)

Studia Mathematica

We prove a T1 theorem and develop a version of Calderón-Zygmund theory for ω-CZO when ω A .

Currently displaying 1 – 20 of 349

Page 1 Next