O the absolute Nörlund summability of a series associated with a Fourier series.
Page 1 Next
S.N. Lal (1976)
Publications de l'Institut Mathématique [Elektronische Ressource]
Tomovski, Živorad (2000)
JIPAM. Journal of Inequalities in Pure & Applied Mathematics [electronic only]
Krasniqi, Xh.Z. (2008)
JIPAM. Journal of Inequalities in Pure & Applied Mathematics [electronic only]
F. Schipp (1979)
Banach Center Publications
Hsiang, Fu Cheng (1970)
Portugaliae mathematica
Fernando Soria (1989)
Studia Mathematica
C. Neugebauer (1972)
Studia Mathematica
Daniel Waterman (1972)
Studia Mathematica
Pavel M. Filipec (1976)
Commentationes Mathematicae Universitatis Carolinae
A. R. Sarpe (1972)
Matematički Vesnik
Matos, Mário C. (1988)
Portugaliae mathematica
Braha, N.L., Krasniqi, Xh.Z. (2009)
Bulletin of Mathematical Analysis and Applications [electronic only]
Braha, N.L. (2010)
APPS. Applied Sciences
Karanvir Singh, Kulwinder Kaur (2009)
Matematički Vesnik
Dansheng Yu, Ping Zhou, Songping Zhou (2007)
Studia Mathematica
We first give a necessary and sufficient condition for , 1 < p < ∞, 1/p - 1 < γ < 1/p, where ϕ(x) is the sum of either or , under the condition that λₙ (where λₙ is aₙ or bₙ respectively) belongs to the class of so called Mean Value Bounded Variation Sequences (MVBVS). Then we discuss the relations among the Fourier coefficients λₙ and the sum function ϕ(x) under the condition that λₙ ∈ MVBVS, and deduce a sharp estimate for the weighted modulus of continuity of ϕ(x) in norm.
Prem Chandra (1973)
Monatshefte für Mathematik
R.J. Nessel, Dickmeis, W. (1985)
Manuscripta mathematica
Pascal Lefevre (1998)
Colloquium Mathematicae
Some new properties of the stationary sets (defined by G. Pisier in [12]) are studied. Some arithmetical conditions are given, leading to the non-stationarity of the prime numbers. It is shown that any stationary set is a set of continuity. Some examples of "large" stationary sets are given, which are not sets of uniform convergence.
Karchava, T. (1997)
Georgian Mathematical Journal
Vyas, R.G. (2005)
JIPAM. Journal of Inequalities in Pure & Applied Mathematics [electronic only]
Page 1 Next