Eigenvalues of random wreath products.
Soit (resp. ) l’ensemble des compacts d’unicité (resp. d’unicité au sens large) du tore . On montre qu’un borélien de dont tout sous-compact est dans est nécessairement contenu dans une réunion dénombrable de compacts de , et on montre que cette propriété n’est plus vraie quand on remplace par .Comme conséquence on obtient qu’un borélien qui est d’unicité est nécessairement maigre. On en déduit aussi l’existence d’un compact d’unicité qui ne peut être recouvert par une suite de compacts...