Page 1

Displaying 1 – 9 of 9

Showing per page

On some properties of the class of stationary sets

Pascal Lefevre (1998)

Colloquium Mathematicae

Some new properties of the stationary sets (defined by G. Pisier in [12]) are studied. Some arithmetical conditions are given, leading to the non-stationarity of the prime numbers. It is shown that any stationary set is a set of continuity. Some examples of "large" stationary sets are given, which are not sets of uniform convergence.

On summability of measures with thin spectra

Maria Roginskaya, Michaël Wojciechowski (2004)

Annales de l’institut Fourier

We study different conditions on the set of roots of the Fourier transform of a measure on the Euclidean space, which yield that the measure is absolutely continuous with respect to the Lebesgue measure. We construct a monotone sequence in the real line with this property. We construct a closed subset of d which contains a lot of lines of some fixed direction, with the property that every measure with spectrum contained in this set is absolutely continuous. We also give examples of sets with such property...

On the L 1 -convergence of Fourier series

S. Fridli (1997)

Studia Mathematica

Since the trigonometric Fourier series of an integrable function does not necessarily converge to the function in the mean, several additional conditions have been devised to guarantee the convergence. For instance, sufficient conditions can be constructed by using the Fourier coefficients or the integral modulus of the corresponding function. In this paper we give a Hardy-Karamata type Tauberian condition on the Fourier coefficients and prove that it implies the convergence of the Fourier series...

Currently displaying 1 – 9 of 9

Page 1