Développement asymptotique d'intégrales oscillantes lentement convergentes à l'infini
Page 1
A. Haraux (1976)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
A. Daoui, Mohamed Morsli, M. Smaali (2012)
Commentationes Mathematicae Universitatis Carolinae
This paper is an extension of the work done in [Morsli M., Bedouhene F., Boulahia F., Duality properties and Riesz representation theorem in the Besicovitch-Orlicz space of almost periodic functions, Comment. Math. Univ. Carolin. 43 (2002), no. 1, 103--117] to the Besicovitch-Musielak-Orlicz space of almost periodic functions. Necessary and sufficient conditions for the reflexivity of this space are given. A Riesz type ``duality representation theorem'' is also stated.
Mohamed Morsli, Fazia Bedouhene, Fatiha Boulahia (2002)
Commentationes Mathematicae Universitatis Carolinae
In [6], the classical Riesz representation theorem is extended to the class of Besicovitch space of almost periodic functions a.p., . It is also shown that this space is reflexive. We shall consider here such results in the context of Orlicz spaces, namely in the class of Besicovitch-Orlicz space of almost periodic functions a.p., where is an Orlicz function.
Page 1