Sur un problème de I. Glicksberg : les idéaux fermés de type fini de
Soit , algèbre de convolution des mesures de Radon bornées sur le groupe abélien localement compact . Pour que soit fermé dans (ou, ce qui revient au même, pour que soit fermé), il faut et il suffit que soit la convolution d’une mesure inversible et d’une mesure idempotente.