On the boundedness of classical operators on weighted Lorentz spaces.
In the paper we find conditions on the pair which ensure the boundedness of the maximal operator and the Calderón-Zygmund singular integral operators from one generalized Morrey space to another , , and from the space to the weak space . As applications, we get some estimates for uniformly elliptic operators on generalized Morrey spaces.
The Integral, , and Derivative, , operators of order , with a function of positive lower type and upper type less than , were defined in [HV2] in the setting of spaces of homogeneous-type. These definitions generalize those of the fractional integral and derivative operators of order , where , given in [GSV]. In this work we show that the composition is a singular integral operator. This result in addition with the results obtained in [HV2] of boundedness of and or the -theorems proved...
In this paper we deal with the stationary Navier-Stokes problem in a domain with compact Lipschitz boundary and datum in Lebesgue spaces. We prove existence of a solution for arbitrary values of the fluxes through the connected components of , with possible countable exceptional set, provided is the sum of the gradient of a harmonic function and a sufficiently small field, with zero total flux for bounded.
In this paper we show that the fractional integral of order α on spaces of homogeneous type embeds into a certain Orlicz space. This extends results of Trudinger [T], Hedberg [H], and Adams-Bagby [AB].
Let be real matrices such that for each is invertible and is invertible for . In this paper we study integral operators of the form
We establish Lp-boundedness for a class of product singular integral operators on spaces M = M1 x M2 x . . . x Mn. Each factor space Mi is a smooth manifold on which the basic geometry is given by a control, or Carnot-Carathéodory, metric induced by a collection of vector fields of finite type. The standard singular integrals on Mi are non-isotropic smoothing operators of order zero. The boundedness of the product operators is then a consequence of a natural Littlewood- Paley theory on M. This in...
We give type conditions which are sufficient for two-weight, strong inequalities for Calderón-Zygmund operators, commutators, and the Littlewood-Paley square function . Our results extend earlier work on weak inequalities in [13].
We prove the uniform weak (1,1) boundedness of a class of oscillatory singular integrals under certain conditions on the phase functions. Our conditions allow the phase function to be completely flat. Examples of such phase functions include and . Some related counterexample is also discussed.
In this paper, we discuss a class of weighted inequalities for operators of potential type on homogeneous spaces. We give sufficient conditions for the weak and strong type weighted inequalities sup_{λ>0} λ|{x ∈ X : |T(fdσ)(x)|>λ }|_{ω}^{1/q} ≤ C (∫_{X} |f|^{p}dσ)^{1/p} and (∫_{X} |T(fdσ)|^{q}dω )^{1/q} ≤ C (∫_X |f|^{p}dσ )^{1/p} in the cases of 0 < q < p ≤ ∞ and 1 ≤ q < p < ∞, respectively, where T is an operator of potential type, and ω and σ are Borel measures on the homogeneous...