Displaying 61 – 80 of 211

Showing per page

Equivalence of norms in one-sided Hp spaces.

Liliana de Rosa, Carlos Segovia (2002)

Collectanea Mathematica

One-sided versions of maximal functions for suitable defined distributions are considered. Weighted norm equivalences of these maximal functions for weights in the Sawyer's Aq+ classes are obtained.

Estimates for oscillatory singular integrals on Hardy spaces

Hussain Al-Qassem, Leslie Cheng, Yibiao Pan (2014)

Studia Mathematica

For any n ∈ ℕ, we obtain a bound for oscillatory singular integral operators with polynomial phases on the Hardy space H¹(ℝⁿ). Our estimate, expressed in terms of the coefficients of the phase polynomial, establishes the H¹ boundedness of such operators in all dimensions when the degree of the phase polynomial is greater than one. It also subsumes a uniform boundedness result of Hu and Pan (1992) for phase polynomials which do not contain any linear terms. Furthermore, the bound is shown to be valid...

Factorization of sequences in discrete Hardy spaces

Santiago Boza (2012)

Studia Mathematica

The purpose of this paper is to obtain a discrete version for the Hardy spaces H p ( ) of the weak factorization results obtained for the real Hardy spaces H p ( ) by Coifman, Rochberg and Weiss for p > n/(n+1), and by Miyachi for p ≤ n/(n+1). It represents an extension, in the one-dimensional case, of the corresponding result by A. Uchiyama who obtained a factorization theorem in the general context of spaces X of homogeneous type, but with some restrictions on the measure that exclude the case of points...

Factorization theorem for product Hardy spaces

Wengu Chen, Yongsheng Han, Changxing Miao (2006)

Studia Mathematica

We extend the well known factorization theorems on the unit disk to product Hardy spaces, which generalizes the previous results obtained by Coifman, Rochberg and Weiss. The basic tools are the boundedness of a certain bilinear form on ℝ²₊ × ℝ²₊ and the characterization of BMO(ℝ²₊ × ℝ²₊) recently obtained by Ferguson, Lacey and Sadosky.

Fejér means of two-dimensional Fourier transforms on H p ( × )

Ferenc Weisz (1999)

Colloquium Mathematicae

The two-dimensional classical Hardy spaces H p ( × ) are introduced and it is shown that the maximal operator of the Fejér means of a tempered distribution is bounded from H p ( × ) to L p ( 2 ) (1/2 < p ≤ ∞) and is of weak type ( H 1 ( × ) , L 1 ( 2 ) ) where the Hardy space H 1 ( × ) is defined by the hybrid maximal function. As a consequence we deduce that the Fejér means of a function f ∈ H 1 ( × ) L l o g L ( 2 ) converge to f a.e. Moreover, we prove that the Fejér means are uniformly bounded on H p ( × ) whenever 1/2 < p < ∞. Thus, in case f ∈ H p ( × ) , the Fejér means...

Fourier analysis in several parameters.

Robert Fefferman (1986)

Revista Matemática Iberoamericana

Clearly, one of the most basic contributions to the fields of real variables, partial differential equations and Fourier analysis in recent times has been the celebrated theorem of Calderón and Zygmund on the boundedness of singular integrals on Rn [1].

Generalized Hardy spaces on tube domains over cones

Gustavo Garrigos (2001)

Colloquium Mathematicae

We define a class of spaces H μ p , 0 < p < ∞, of holomorphic functions on the tube, with a norm of Hardy type: | | F | | H μ p p = s u p y Ω Ω ̅ | F ( x + i ( y + t ) ) | p d x d μ ( t ) . We allow μ to be any quasi-invariant measure with respect to a group acting simply transitively on the cone. We show the existence of boundary limits for functions in H μ p , and when p ≥ 1, characterize the boundary values as the functions in L μ p satisfying the tangential CR equations. A careful description of the measures μ when their supports lie on the boundary of the cone is also provided....

H 1 -BMO duality on graphs

Emmanuel Russ (2000)

Colloquium Mathematicae

On graphs satisfying the doubling property and the Poincaré inequality, we prove that the space H m a x 1 is equal to H a t 1 , and therefore that its dual is BMO. We also prove the atomic decomposition for H m a x p for p ≤ 1 close enough to 1.

H p spaces associated with Schrödinger operators with potentials from reverse Hölder classes

Jacek Dziubański, Jacek Zienkiewicz (2003)

Colloquium Mathematicae

Let A = -Δ + V be a Schrödinger operator on d , d ≥ 3, where V is a nonnegative potential satisfying the reverse Hölder inequality with an exponent q > d/2. We say that f is an element of H A p if the maximal function s u p t > 0 | T t f ( x ) | belongs to L p ( d ) , where T t t > 0 is the semigroup generated by -A. It is proved that for d/(d+1) < p ≤ 1 the space H A p admits a special atomic decomposition.

H¹ and BMO for certain locally doubling metric measure spaces of finite measure

Andrea Carbonaro, Giancarlo Mauceri, Stefano Meda (2010)

Colloquium Mathematicae

In a previous paper the authors developed an H¹-BMO theory for unbounded metric measure spaces (M,ρ,μ) of infinite measure that are locally doubling and satisfy two geometric properties, called “approximate midpoint” property and “isoperimetric” property. In this paper we develop a similar theory for spaces of finite measure. We prove that all the results that hold in the infinite measure case have their counterparts in the finite measure case. Finally, we show that the theory applies to a class...

Currently displaying 61 – 80 of 211