Loading [MathJax]/extensions/MathZoom.js
Displaying 161 –
180 of
188
We introduce the minimal operator on weighted grand Lebesgue spaces, discuss some weighted norm inequalities and characterize the conditions under which the inequalities hold. We also prove that the John-Nirenberg inequalities in the framework of weighted grand Lebesgue spaces are valid provided that the weight function belongs to the Muckenhoupt class.
2000 Math. Subject Classification: Primary 42B20, 42B25, 42B35In this paper we study the Riesz potentials (B -Riesz potentials) generated by the Laplace-Bessel differential operator ∆B.* Akif Gadjiev’s research is partially supported by the grant of INTAS (project 06-1000017-8792) and Vagif Guliyev’s research is partially supported by the grant of the Azerbaijan–U.S. Bilateral Grants Program II (project ANSF Award / 16071) and by the
grant of INTAS (project 05-1000008-8157).
Let , i = 1,2,3, denote positive Borel measures on ℝⁿ, let denote the usual collection of dyadic cubes in ℝⁿ and let K: → [0,∞) be a map. We give a characterization of a trilinear embedding theorem, that is, of the inequality
in terms of a discrete Wolff potential and Sawyer’s checking condition, when 1 < p₁,p₂,p₃ < ∞ and 1/p₁ + 1/p₂ + 1/p₃ ≥ 1.
Let be a non-negative self-adjoint operator acting on satisfying a pointwise Gaussian estimate for its heat kernel. Let be an weight on , . In this article we obtain a weighted atomic decomposition for the weighted Hardy space , associated to . Based on the atomic decomposition, we show the dual relationship between and .
We investigate traces of functions, belonging to a class of functions with dominating mixed smoothness in , with respect to planes in oblique position. In comparison with the classical theory for isotropic spaces a few new phenomenona occur. We shall present two different approaches. One is based on the use of the Fourier transform and restricted to . The other one is applicable in the general case of Besov-Lizorkin-Triebel spaces and based on atomic decompositions.
The paper deals with dimension-controllable (tractable) embeddings of Besov spaces on n-dimensional cubes into Zygmund spaces. This can be expressed in terms of tractability envelopes.
The paper deals with dimension-controllable (tractable) embeddings of Besov spaces on n-dimensional cubes into Zygmund spaces.
The process of translation averaging is known to improve dyadic BMO to the space BMO of functions of bounded mean oscillation, in the sense that the translation average of a family of dyadic BMO functions is necessarily a BMO function. The present work investigates the effect of translation averaging in other dyadic settings. We show that translation averages of dyadic doubling measures need not be doubling measures, translation averages of dyadic Muckenhoupt weights need not be Muckenhoupt weights,...
Suppose that μ is a Radon measure on , which may be non-doubling. The only condition assumed on μ is a growth condition, namely, there is a constant C₀ > 0 such that for all x ∈ supp(μ) and r > 0,
μ(B(x,r)) ≤ C₀rⁿ,
where 0 < n ≤ d. The authors provide a theory of Triebel-Lizorkin spaces for 1 < p < ∞, 1 ≤ q ≤ ∞ and |s| < θ, where θ > 0 is a real number which depends on the non-doubling measure μ, C₀, n and d. The method does not use the vector-valued maximal function inequality...
Sufficient conditions for a two-weight norm inequality for potential type integral operators to hold are given in the case p > q > 0 and p > 1 in terms of the Hedberg-Wolff potential.
In this paper, we are going to characterize the space through variable Lebesgue spaces and Morrey spaces. There have been many attempts to characterize the space by using various function spaces. For example, Ho obtained a characterization of with respect to rearrangement invariant spaces. However, variable Lebesgue spaces and Morrey spaces do not appear in the characterization. One of the reasons is that these spaces are not rearrangement invariant. We also obtain an analogue of the well-known...
This paper deals with wavelet frames for a large class of distributions on euclidean n-space, including all compactly supported distributions. These representations characterize the global, local, and pointwise regularity of the distribution considered.
We extend the classical theory of the continuous and discrete wavelet transform to functions with values in UMD spaces. As a by-product we obtain equivalent norms on Bochner spaces in terms of g-functions.
The classical Hardy-Littlewood maximal operator is bounded not only on the classical Lebesgue spaces (in the case ), but (in the case when is log-Hölder continuous and ) on the variable Lebesgue spaces , too. Furthermore, the classical Hardy-Littlewood maximal operator is of weak-type . In the present note we generalize Besicovitch’s covering theorem for the so-called -rectangles. We introduce a general maximal operator and with the help of generalized -functions, the strong- and weak-type...
For 1 < p < ∞ and for weight w in , we show that the r-variation of the Fourier sums of any function f in is finite a.e. for r larger than a finite constant depending on w and p. The fact that the variation exponent depends on w is necessary. This strengthens previous work of Hunt-Young and is a weighted extension of a variational Carleson theorem of Oberlin-Seeger-Tao-Thiele-Wright. The proof uses weighted adaptation of phase plane analysis and a weighted extension of a variational inequality...
We establish the boundedness for the commutators of multilinear Hausdorff operators on the product of some weighted Morrey-Herz type spaces with variable exponent with their symbols belonging to both Lipschitz space and central BMO space. By these, we generalize and strengthen some previously known results.
Currently displaying 161 –
180 of
188