Previous Page 2

Displaying 21 – 40 of 40

Showing per page

Pointwise multipliers for reverse Holder spaces

Stephen Buckley (1994)

Studia Mathematica

We classify weights which map reverse Hölder weight spaces to other reverse Hölder weight spaces under pointwise multiplication. We also give some fairly general examples of weights satisfying weak reverse Hölder conditions.

Pointwise multipliers on martingale Campanato spaces

Eiichi Nakai, Gaku Sadasue (2014)

Studia Mathematica

We introduce generalized Campanato spaces p , ϕ on a probability space (Ω,ℱ,P), where p ∈ [1,∞) and ϕ: (0,1] → (0,∞). If p = 1 and ϕ ≡ 1, then p , ϕ = B M O . We give a characterization of the set of all pointwise multipliers on p , ϕ .

Pointwise multipliers on weighted BMO spaces

Eiichi Nakai (1997)

Studia Mathematica

Let E and F be spaces of real- or complex-valued functions defined on a set X. A real- or complex-valued function g defined on X is called a pointwise multiplier from E to F if the pointwise product fg belongs to F for each f ∈ E. We denote by PWM(E,F) the set of all pointwise multipliers from E to F. Let X be a space of homogeneous type in the sense of Coifman-Weiss. For 1 ≤ p < ∞ and for ϕ : X × + + , we denote by b m o ϕ , p ( X ) the set of all functions f L l o c p ( X ) such that s u p a X , r > 0 1 / ϕ ( a , r ) ( 1 / μ ( B ( a , r ) ) ʃ B ( a , r ) | f ( x ) - f B ( a , r ) | p d μ ) 1 / p < , where B(a,r) is the ball centered at a and of...

Polyhedral summability of multiple Fourier series (and explicit formulas for Dirichlet kernels on n and on compact Lie groups)

Giancarlo Travaglini (1993)

Colloquium Mathematicae

We study polyhedral Dirichlet kernels on the n-dimensional torus and we write a fairly simple formula which extends the one-dimensional identity j = - N N e i j t = s i n ( ( N + ( 1 / 2 ) ) t ) / s i n ( ( 1 / 2 ) t ) . We prove sharp results for the Lebesgue constants and for the pointwise boundedness of polyhedral Dirichlet kernels; we apply our results and methods to approximation theory, to more general summability methods and to Fourier series on compact Lie groups, where we write an asymptotic formula for the Dirichlet kernels.

Power means and the reverse Hölder inequality

Victor D. Didenko, Anatolii A. Korenovskyi (2011)

Studia Mathematica

Let w be a non-negative measurable function defined on the positive semi-axis and satisfying the reverse Hölder inequality with exponents 0 < α < β. In the present paper, sharp estimates of the compositions of the power means α w ( x ) : = ( ( 1 / x ) 0 x w α ( t ) d t ) 1 / α , x > 0, are obtained for various exponents α. As a result, for the function w a property of self-improvement of summability exponents is established.

Principe d’Heisenberg et fonctions positives

Jean Bourgain, Laurent Clozel, Jean-Pierre Kahane (2010)

Annales de l’institut Fourier

On décrit un problème naturel concernant la transformation de Fourier. Soient f , f ^ deux fonctions associées par celle-ci, positives pour x a et nulles en zéro. Quelle est la borne inférieure pour a  ? En dimension supérieure, même question, l’intervalle étant remplacé par la boule de rayon a . On montre l’existence d’une borne inférieure strictement positive, qui est estimée en fonction de la dimension. La dernière section montre que cette question est naturellement liée à la théorie des fonctions zêta....

Problems on averages and lacunary maximal functions

Andreas Seeger, James Wright (2011)

Banach Center Publications

We prove three results concerning convolution operators and lacunary maximal functions associated to dilates of measures. First we obtain an H¹ to L 1 , bound for lacunary maximal operators under a dimensional assumption on the underlying measure and an assumption on an L p regularity bound for some p > 1. Secondly, we obtain a necessary and sufficient condition for L² boundedness of lacunary maximal operator associated to averages over convex curves in the plane. Finally we prove an L p regularity result...

Currently displaying 21 – 40 of 40

Previous Page 2