Gegenbauer polynomials and semiseparable matrices.
By a general Franklin system corresponding to a dense sequence of knots 𝓣 = (tₙ, n ≥ 0) in [0,1] we mean a sequence of orthonormal piecewise linear functions with knots 𝓣, that is, the nth function of the system has knots t₀, ..., tₙ. The main result of this paper is a characterization of sequences 𝓣 for which the corresponding general Franklin system is a basis or an unconditional basis in H¹[0,1].
Let be a finite set of step functions or real valued trigonometric polynomials on = [0,1) satisfying a certain orthonormality condition. We study multiscale generalized Riesz product measures μ defined as weak-* limits of elements , where are -dimensional subspaces of L₂() spanned by an orthonormal set which is produced from dilations and multiplications of elements of and . The results involve mutual absolute continuity or singularity of such Riesz products extending previous results on...