On a generalization of the martingale maximal theorem
Condizione necessaria e sufficiente affinché una funzione rapidamente decrescente di variabile reale sia uniformemente analitica è che per i suoi coefficienti di Fourier-Hermite riesca per abbastanza piccolo.
We give a common generalization of the Walsh system, Vilenkin system, the character system of the group of 2-adic (m-adic) integers, the product system of normalized coordinate functions for continuous irreducible unitary representations of the coordinate groups of noncommutative Vilenkin groups, the UDMD product systems (defined by F. Schipp) and some other systems. We prove that for integrable functions σₙf → f (n → ∞) a.e., where σₙf is the nth (C,1) mean of f. (For the character system of the...
Let G be the Walsh group. For we prove the a. e. convergence σf → f(n → ∞), where is the nth (C,1) mean of f with respect to the Walsh-Kaczmarz system. Define the maximal operator We prove that σ* is of type (p,p) for all 1 < p ≤ ∞ and of weak type (1,1). Moreover, , where H is the Hardy space on the Walsh group.