The Convergence Rates of Expansions in Jacobi Polynomials.
To each set of knots for i = 0,...,2ν and for i = 2ν + 1,..., n + ν, with 1 ≤ ν ≤ n, there corresponds the space of all piecewise linear and continuous functions on I = [0,1] with knots and the orthogonal projection of L²(I) onto . The main result is . This shows that the Lebesgue constant for the Franklin orthogonal system is 2 + (2-√3)².
The main aim of this paper is to prove that the maximal operator is bounded from the Hardy space to weak- and is not bounded from to .
In this paper, we give a criterion for unconditional convergence with respect to some summability methods, dealing with the topological size of the set of choices of sign providing convergence. We obtain similar results for boundedness. In particular, quasi-sure unconditional convergence implies unconditional convergence.
The transplantation operators for the Hankel transform are considered. We prove that the transplantation operator maps an integrable function under certain conditions to an integrable function. As an application, we obtain the L¹-boundedness and H¹-boundedness of Cesàro operators for the Hankel transform.
This paper develops some Littlewood-Paley theory for Hermite expansions. The main result is that certain analogues of Triebel-Lizorkin spaces are well-defined in the context of Hermite expansions.
Let s* denote the maximal function associated with the rectangular partial sums of a given double function series with coefficients . The following generalized Hardy-Littlewood inequality is investigated: , where ξ̅=max(ξ,1), 0 < p < ∞, and μ is a suitable positive Borel measure. We give sufficient conditions on and μ under which the above Hardy-Littlewood inequality holds. Several variants of this inequality are also examined. As a consequence, the ||·||p,μ-convergence property of ...