A characterization of localized Bessel potential spaces and applications to Jacobi and Henkel multipliers
We show that for the t-deformed semicircle measure, where 1/2 < t ≤ 1, the expansions of functions with respect to the associated orthonormal polynomials converge in norm when 3/2 < p < 3 and do not converge when 1 ≤ p < 3/2 or 3 < p. From this we conclude that natural expansions in the non-commutative spaces of free group factors and of free commutation relations do not converge for 1 ≤ p < 3/2 or 3 < p.
A proof of a necessary and sufficient condition for a sequence to be a multiplier of the normalized Haar basis of L¹[0,1] is given. This proof depends only on the most elementary properties of this system and is an alternative proof to that recently found by Semenov & Uksusov (2012). Additionally, representations are given, which use stochastic processes, of this multiplier norm and of related multiplier norms.
We investigate the behaviour of Fourier coefficients with respect to the system of ultraspherical polynomials. This leads us to the study of the “boundary” Lorentz space corresponding to the left endpoint of the mean convergence interval. The ultraspherical coefficients of -functions turn out to behave like the Fourier coefficients of functions in the real Hardy space ReH¹. Namely, we prove that for any the series is the Fourier series of some function φ ∈ ReH¹ with .
There is a one parameter family of bilinear Hilbert transforms. Recently, some progress has been made to prove Lp estimates for these operators uniformly in the parameter. In the current article we present some of these techniques in a simplified model...
We prove the almost everywhere convergence of the Marcinkiewicz means of integrable functions σₙf → f for every f ∈ L¹(I²), where I is the group of 2-adic integers.