Digital Nets and Sequences Constructed over Finite Rings and Their Application to Quasi-Monte Carlo Integration.
We consider sequences of linear operators Uₙ with a localization property. It is proved that for any set E of measure zero there exists a set G for which diverges at each point x ∈ E. This result is a generalization of analogous theorems known for the Fourier sum operators with respect to different orthogonal systems.