Displaying 261 – 280 of 324

Showing per page

The Lebesgue constants for the Franklin orthogonal system

Z. Ciesielski, A. Kamont (2004)

Studia Mathematica

To each set of knots t i = i / 2 n for i = 0,...,2ν and t i = ( i - ν ) / n for i = 2ν + 1,..., n + ν, with 1 ≤ ν ≤ n, there corresponds the space ν , n of all piecewise linear and continuous functions on I = [0,1] with knots t i and the orthogonal projection P ν , n of L²(I) onto ν , n . The main result is l i m ( n - ν ) ν | | P ν , n | | = s u p ν , n : 1 ν n | | P ν , n | | = 2 + ( 2 - 3 ) ² . This shows that the Lebesgue constant for the Franklin orthogonal system is 2 + (2-√3)².

The local versions of H p ( n ) spaces at the origin

Shan Lu, Da Yang (1995)

Studia Mathematica

Let 0 < p ≤ 1 < q < ∞ and α = n(1/p - 1/q). We introduce some new Hardy spaces H K ̇ q α , p ( n ) which are the local versions of H p ( n ) spaces at the origin. Characterizations of these spaces in terms of atomic and molecular decompositions are established, together with their φ-transform characterizations in M. Frazier and B. Jawerth’s sense. We also prove an interpolation theorem for operators on H K ̇ q α , p ( n ) and discuss the H K ̇ q α , p ( n ) -boundedness of Calderón-Zygmund operators. Similar results can also be obtained for the non-homogeneous...

The Mortar method in the wavelet context

Silvia Bertoluzza, Valérie Perrier (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper deals with the use of wavelets in the framework of the Mortar method. We first review in an abstract framework the theory of the mortar method for non conforming domain decomposition, and point out some basic assumptions under which stability and convergence of such method can be proven. We study the application of the mortar method in the biorthogonal wavelet framework. In particular we define suitable multiplier spaces for imposing weak continuity. Unlike in the classical mortar method,...

The Mortar Method in the Wavelet Context

Silvia Bertoluzza, Valérie Perrier (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper deals with the use of wavelets in the framework of the Mortar method. We first review in an abstract framework the theory of the mortar method for non conforming domain decomposition, and point out some basic assumptions under which stability and convergence of such method can be proven. We study the application of the mortar method in the biorthogonal wavelet framework. In particular we define suitable multiplier spaces for imposing weak continuity. Unlike in the classical mortar method,...

The wavelet characterization of the space Weak H¹

Heping Liu (1992)

Studia Mathematica

The space Weak H¹ was introduced and investigated by Fefferman and Soria. In this paper we characterize it in terms of wavelets. Equivalence of four conditions is proved.

Theoretical aspects of a multiscale analysis of the eigenoscillations of the Earth.

Volker Michel (2003)

Revista Matemática Complutense

The elastic behaviour of the Earth, including its eigenoscillations, is usually described by the Cauchy-Navier equation. Using a standard approach in seismology we apply the Helmholtz decomposition theorem to transform the Fourier transformed Cauchy-Navier equation into two non-coupled Helmholtz equations and then derive sequences of fundamental solutions for this pair of equations using the Mie representation. Those solutions are denoted by the Hansen vectors Ln,j, Mn,j, and Nn,j in geophysics....

Tractable embeddings of Besov spaces into Zygmund spaces

Hans Triebel (2011)

Banach Center Publications

The paper deals with dimension-controllable (tractable) embeddings of Besov spaces on n-dimensional cubes into Zygmund spaces. This can be expressed in terms of tractability envelopes.

Transformée en paquets d'ondelettes des signaux stationnaires: comportement asymptotique des densités spectrales.

Loïc Hervé (1996)

Revista Matemática Iberoamericana

We consider quadrature mirror filters, and the associated wavelet packet transform. Let X = {Xn}n∈Z be a stationary signal which has a continuous spectral density f. We prove that the 2n signals obtained from X by n iterations of the transform converge to white noises when n → +∞. If f is holderian, the convergence rate is exponential.

Translational averaging for completeness, characterization and oversampling of wavelets.

Richard S. Laugesen (2002)

Collectanea Mathematica

The single underlying method of averaging the wavelet functional over translates yields first a new completeness criterion for orthonormal wavelet systems, and then a unified treatment of known results on characterization of wavelets on the Fourier transform side, on preservation of frame bounds by oversampling, and on equivalence of affine and quasiaffine frames. The method applies to multiwavelet systems in all dimensions, to dilation matrices that are in some cases not expanding, and to dual...

Currently displaying 261 – 280 of 324