The center of an algebra of operators
It is well known that in a free group , one has , where E is the set of all the generators. We show that the (completely) bounded multiplier norm of any set satisfying the Leinert condition depends only on its cardinality. Consequently, based on a result of Wysoczański, we obtain a formula for .
Let G be a locally compact group, let (φ,ψ) be a complementary pair of Young functions, and let and be the corresponding Orlicz spaces. Under some conditions on φ, we will show that for a Banach -submodule X of , the multiplier space is a dual Banach space with predual , where the closure is taken in the dual space of . We also prove that if is a Δ₂-regular N-function, then , the space of convolutors of , is identified with the dual of a Banach algebra of functions on G under pointwise...
By combining some results of C. S. Herz on the Fourier algebra with the notion of contractions of Lie groups, we prove theorems which allow transference of multipliers either from the Lie algebra or from the Cartan motion group associated to a compact Lie group to the group itself.