On a recurrence formula for elementary spherical functions on symmetric spaces and its applications to multipliers for the spherical Fourier transform.
Let be the left convolution operators on with support included in F and denote those which are norm limits of convolution by bounded measures in M(F). Conditions on F are given which insure that , and are as big as they can be, namely have as a quotient, where the ergodic space W contains, and at times is very big relative to . Other subspaces of are considered. These improve results of Cowling and Fournier, Price and Edwards, Lust-Piquard, and others.
Fefferman-Stein, Wainger and Sjölin proved optimal boundedness for certain oscillating multipliers on . In this article, we prove an analogue of their result on a compact Lie group.
Let I = (0,∞) with the usual topology. For x,y ∈ I, we define xy = max(x,y). Then I becomes a locally compact commutative topological semigroup. The Banach space L¹(I) of all Lebesgue integrable functions on I becomes a commutative semisimple Banach algebra with order convolution as multiplication. A bounded linear operator T on L¹(I) is called a multiplier of L¹(I) if T(f*g) = f*Tg for all f,g ∈ L¹(I). The space of multipliers of L¹(I) was determined by Johnson and Lahr. Let X be a Banach space...