Closed subgroups of nuclear spaces are weakly closed
Let G be a locally compact group. Its dual space, G*, is the set of all extreme points of the set of normalized continuous positive definite functions of G. In the early 1970s, Granirer and Rudin proved independently that if G is amenable as discrete, then G is discrete if and only if all the translation invariant means on are topologically invariant. In this paper, we define and study G*-translation operators on VN(G) via G* and investigate the problem of the existence of G*-translation invariant...
Étude de l’intersection pour un ensemble de mesures positives bornées sur un espace (ou un groupe commutatif) localement compact.Pour un espace localement compact, on étudie les rapports entre les propriétés de compacité de , la densité de certains sous-espaces, le dual et le bidual de ces sous-espaces, la compacité des applications canoniques.Pour un groupe commutatif localement compact de dual , certaines de ces propriétés sont liées à la continuité de l’application et à la compacité relative...
We construct a precompact completely regular paratopological Abelian group G of size (2ω)+ such that all subsets of G of cardinality ≤ 2ω are closed. This shows that Protasov’s theorem on non-closed discrete subsets of precompact topological groups cannot be extended to paratopological groups. We also prove that the group reflection of the product of an arbitrary family of paratopological (even semitopological) groups is topologically isomorphic to the product of the group reflections of the factors,...
Let A and B be semisimple commutative Banach algebras with bounded approximate identities. We investigate the problem of extending a homomorphism φ: A → B to a homomorphism of the multiplier algebras M(A) and M(B) of A and B, respectively. Various sufficient conditions in terms of B (or B and φ) are given that allow the construction of such extensions. We exhibit a number of classes of Banach algebras to which these criteria apply. In addition, we prove a polar decomposition for homomorphisms from...