Displaying 21 – 40 of 71

Showing per page

Generalized functions on adeles. Linear and non-linear theories

Yakov V. Radyno, Yauhen M. Radyna (2010)

Banach Center Publications

We consider various generalizations of linear homogeneous distributions on adeles and construct a number of algebras of non-linear generalized functions on adeles and totally disconnected groups such as the discrete adeles.

Haar system on a product of zero-dimensional compact groups

Sergei Lukomskii (2011)

Open Mathematics

In this work, we study the problem of constructing Haar bases on a product of arbitrary compact zero-dimensional Abelian groups. A general scheme for the construction of Haar functions is given for arbitrary dimension. For dimension d=2, we describe all Haar functions.

Haar wavelets on the Lebesgue spaces of local fields of positive characteristic

Biswaranjan Behera (2014)

Colloquium Mathematicae

We construct the Haar wavelets on a local field K of positive characteristic and show that the Haar wavelet system forms an unconditional basis for L p ( K ) , 1 < p < ∞. We also prove that this system, normalized in L p ( K ) , is a democratic basis of L p ( K ) . This also proves that the Haar system is a greedy basis of L p ( K ) for 1 < p < ∞.

Linear combinations of generators in multiplicatively invariant spaces

Victoria Paternostro (2015)

Studia Mathematica

Multiplicatively invariant (MI) spaces are closed subspaces of L²(Ω, ) that are invariant under multiplication by (some) functions in L ( Ω ) ; they were first introduced by Bownik and Ross (2014). In this paper we work with MI spaces that are finitely generated. We prove that almost every set of functions constructed by taking linear combinations of the generators of a finitely generated MI space is a new set of generators for the same space, and we give necessary and sufficient conditions on the linear...

Majoration de la transformée de Fourier de certaines mesures

Noël Lohoué, Jacques Peyrière (1983)

Annales de l'institut Fourier

Soit p une fonction polynôme de R m dans R . On considère la mesure μ p sur le graphe de p dont la projection sur R m est la mesure de Lebesgue. On étudie ici le comportement de la transformée de Fourier μ ^ p ( u , v ) lorsque v approche de 0 (de telles distributions apparaissent comme caractères de représentations de groupes de Lie nilpotents). On étend des résultats de L. Corwin et F.P. Greenleaf (Comm. on Pure and Applied Math., 31 (1975), 681–705) au cas où le gradient de la partie de p homogène de plus haut degré...

Mean periodic functions on phase space and the Pompeiu problem with a twist

Sundaram Thangavelu (1995)

Annales de l'institut Fourier

We show that when f is a mean periodic function of tempered growth on the reduced Heisenberg group then the closed translation and rotation invariant subspace generated by f contains an elementary spherical function. Using a Paley-Wiener theorem for the Fourier-Weyl transform we formulate a conjecture for arbitrary mean periodic functions.

Currently displaying 21 – 40 of 71