Previous Page 4

Displaying 61 – 71 of 71

Showing per page

The theory of reproducing systems on locally compact abelian groups

Gitta Kutyniok, Demetrio Labate (2006)

Colloquium Mathematicae

A reproducing system is a countable collection of functions ϕ j : j such that a general function f can be decomposed as f = j c j ( f ) ϕ j , with some control on the analyzing coefficients c j ( f ) . Several such systems have been introduced very successfully in mathematics and its applications. We present a unified viewpoint in the study of reproducing systems on locally compact abelian groups G. This approach gives a novel characterization of the Parseval frame generators for a very general class of reproducing systems on L²(G)....

Unions et intersections d’espaces L p invariantes par translation ou convolution

Jean-Paul Bertrandias, Christian Datry, Christian Dupuis (1978)

Annales de l'institut Fourier

Étude des propriétés des unions et intersections d’espaces L p ( s ) relatifs à un ensemble S de mesures positives sur un groupe commutatif localement compact lorsque S est invariant par translation ou stable par convolution.Dans des cas particuliers, on retrouve les propriétés d’espaces étudiés par A. Beurling et par B. Koremblium.On étudie aussi les espaces p ( L p ' ) formés des fonctions appartenant localement à L p ' et qui ont un comportement p à l’infini.

Currently displaying 61 – 71 of 71

Previous Page 4