Terme constant des fonctions tempérées sur un espace symétrique réductif.
We prove a central limit theorem for certain invariant random variables on the symmetric cone in a formally real Jordan algebra. This extends form the previous results of Richards and Terras on the cone of real positive definite matrices.
We survey results concerning the extent to which information about a convex body's projections or sections determine that body. We will see that, if the body is known to be centrally symmetric, then it is determined by the size of its projections. However, without the symmetry condition, knowledge of the average shape of projections or sections often determines the body. Rather surprisingly, the dimension of the projections or sections plays a key role and exceptional cases do occur but appear to...
We show that the explicit formula of Stanley-Féray-Śniady for the characters of the symmetric group has a natural extension to the generalized characters. These are the spherical functions of the unbalanced Gel’fand pair .
The Wigner Theorem states that the statistical distribution of the eigenvalues of a random Hermitian matrix converges to the semi-circular law as the dimension goes to infinity. It is possible to establish this result by using harmonic analysis on the Heisenberg group. In fact this convergence corresponds to the topology of the set of spherical functions associated to the action of the unitary group on the Heisenberg group.