Discontinuous translation invariant linear functional on L¹(G)
Nous déterminons pour certains espaces homogènes les distances invariantes qui proviennent d’un plongement de dans un espace de Hilbert. Le carré d’une telle distance est un noyau de type négatif invariant dont nous donnons une représentation, c’est la formule de Lévy-Kinchine. Nous en déduisons que si possède la propriété (T) de Kajdan une telle distance est toujours bornée.
We study the spaces of Lorentz-Zygmund multipliers on compact abelian groups and show that many of these spaces are distinct. This generalizes earlier work on the non-equality of spaces of Lorentz multipliers.
Ditkin sets for the Fourier algebra A(G/K), where K is a compact subgroup of a locally compact group G, are studied. The main results discussed are injection theorems, direct image theorems and the relation between Ditkin sets and operator Ditkin sets and, in the compact case, the inverse projection theorem for strong Ditkin sets and the relation between strong Ditkin sets for the Fourier algebra and the Varopoulos algebra. Results on unions of Ditkin sets and on tensor products are also given.