Fonctions harmoniques positives sur certains groupes de Lie résolubles connexes
A Gutzmer formula for the complexification of a Riemann symmetric space. We consider a complex manifold and a real Lie group of holomorphic automorphisms of . The question we study is, for a holomorphic function on , to evaluate the integral of over a -orbit by using the harmonic analysis of . When is an annulus in the complex plane and the rotation group, it is solved by a classical formula which is sometimes called Gutzmer’s formula. We establish a generalization of it when is...
This work deals with various questions concerning Fourier multipliers on , Schur multipliers on the Schatten class as well as their completely bounded versions when and are viewed as operator spaces. For this purpose we use subsets of ℤ enjoying the non-commutative Λ(p)-property which is a new analytic property much stronger than the classical Λ(p)-property. We start by studying the notion of non-commutative Λ(p)-sets in the general case of an arbitrary discrete group before turning to the...
Let H₁ be the 3-dimensional Heisenberg group. We prove that a modified version of the spherical transform is an isomorphism between the space 𝓢ₘ(H₁) of Schwartz functions of type m and the space 𝓢(Σₘ) consisting of restrictions of Schwartz functions on ℝ² to a subset Σₘ of the Heisenberg fan with |m| of the half-lines removed. This result is then applied to study the case of general Schwartz functions on H₁.