Riesz means on Lie groups and riemannian manifolds of nonnegative curvature
Let be a metric space, equipped with a Borel measure satisfying suitable compatibility conditions. An amalgam is a space which looks locally like but globally like . We consider the case where the measure of the ball with centre and radius behaves like a polynomial in , and consider the mapping properties between amalgams of kernel operators where the kernel behaves like when and like when . As an application, we describe Hardy–Littlewood–Sobolev type regularity theorems...
In this paper we obtain the -boundedness of Riesz transforms for the Dunkl transform for all .
We show that a comeager Π₁¹ hereditary family of compact sets must have a dense subfamily which is also hereditary. Using this, we prove an “abstract” result which implies the existence of independent ℳ ₀-sets, the meagerness of ₀-sets with the property of Baire, and generalizations of some classical results of Mycielski. Finally, we also give some natural examples of true sets.